Target Analyses in Parallel Reaction Monitoring Mode (PRM)

Skyline Webinar

January 13, 2015

Bruno Domon, PhD Head Luxembourg Clinical Proteomics Center Invited Professor University of Luxembourg

INTRODUCTION

TARGET QUANTITATIVE ASSAYS

Characteristics of Quantitative Assays

Biological variability

- Need to perform large studies
- Throughput, *i.e.* robust platform
- Multiplexing capability

Complexity of proteomic samples

- Reduce sample complexity (interferences in measurements)
- High resolution instruments: LC + MS

Types of Targeted Experiments

Classical Quantitative Experiment

- **Precise quantification** (*biomarkers*)
- Internal standards (calibrated amount)
- Limited number of analytes

Screening Experiment

- Detection of peptides in complex matrix (e.g. *blood or urine samples*)
- Large scale (hundred of candidates)
- Multiplexing capability

Gallien et al., J. Mass Spectrom. 2011

Selected Reaction Monitoring (SRM)

Kim et al., Proteomics Clin. Appl. 2013

Targeted Proteomics

• SRM experiments: triple quadrupole instrument - reference method

• Limitations:

- Actual number of transitions to be monitored
- Low resolution mass analyzers (both Q1 and Q3)
 - > co-isolation of **interferences** along with the precursor ion

Gallien et al., J. Mass Spectrom. 2011

Selectivity is an Issue

"One train can hide another one ! " Check twice !

Selectivity of Measurements

Domon - 2015

Skyline Webinar

Kim et al., Proteomics Clin. Appl. 2013 8

PARALLEL REACTION MONITORING (PRM)

Parallel Reaction Monitoring (PRM)

• Performed on a quadrupole / orbitrap instrument (high-resolution)

Gallien et al., J. Proteomics 2014

Design of a Targeted Experiment: PRM Mode

Parallel Reaction Monitoring Mode (PRM)

Parallel Reaction Monitoring Experiment

Kim et al., Proteomics Clin. Appl. 2013

Quantification Methods in PRM

Sequential: Iterative analyses

- Sequential isolation / fragmentation events
- Multiple detection scans

Multiplexed: Parallel analysis

- Sequential isolation and fragmentation
- Intermediate storage
- Single detection scan

Gallien et al., Mol. Cell. Proteomics 2012

PRM Mode: Multiplexed Analysis

- Sequential isolation of L/H precursors
- Fragmentation and storage in HCD cell
- o <u>One</u> orbitrap detection scan

Quantification similar to SRM, but using high resolution fragment ions

Skyline Webinar

PRM Analyses of Plasma Samples

Selectivity in HR/AM Mode /1

Selectivity in HR/AM Mode /2

- **—** 682.40 -> 977.61
- ____ yyy -> 977.52, *Interference*

38.5

39.5

RT (min)

40.5

Selectivity of PRM Measurements

Selectivity of MS/MS Analyses

Selectivity of measurements is affected by the precursor isolation window
Increased (nominal) orbitrap resolution (17 k to 70k) partially compensate

Conclusion

Parallel Reaction Monitoring

 High-resolution accurate mass quantification is an alternative to conventional SRM

Simple experimental design

- Acquisition and data analysis are decoupled
- Only precursor m/z and elution times are required a priori

• Iterative data processing: selection of fragment ions post-acquisition

Data analysis is performed using conventional tools: Skyline

Improved data quality

- High confidence assignments: *accurate mass; reference MS/MS spectra*)
- Increased analytical precision: high selective measurements.