

Statistical analysis with MSstats

US HUPO short course 2015: **Design and analysis of quantitative proteomic experiment.**

Meena Choi Department of Statistics, Purdue University Group of Prof. Olga Vitek

1. MSstats : statistical tool for quantitative MS proteomics

- Workflow of MSstats
- MSstats as an external tool
 - Integration of Skyline improves analysis workflow
 - User interface

2. Study of poor quality of peaks

3. How to access MSstats

MSstats : statistical tool for quantitative MS proteomics

Oxford Journals > Life Sciences & Mathematics & Physical Sciences > Bioinformatics > Advance

MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments

Meena Choi¹, Ching-Yun Chang¹, Timothy Clough¹, Daniel Broudy³, Trevor Killeen³, Brendan MacLean³ and Olga Vitek¹

Open-source R-based package for **statistical relative quantification** of peptides and proteins in mass spectrometry-based proteomic experiments.

What we can do in MSstats

- 1. Test proteins for differential abundance
- 2. Quantify proteins in biological samples
- 3. Design of experiment

Type of experimental design

- Label-free workflows or workflows that use stable isotope labeled reference proteins and peptides
- SRM, DDA or shotgun, DIA or SWATH
- Comparisons of experimental conditions or times, or paired design

MSstats workflow : Experimental design

Input format

	•		Precursor	_	Product					
	Protein	Peptide	charge	Fragment	charge	Label C	Condition	Subject	Run	Intensity
1	ProteinName	PeptideSequence	PrecursorCharge	FragmentIon	ProductCharge	IsotopeLabelType	Condition	BioReplicate	Run	Intensity
2	ACEA	EILGHEIFFDWELP	3	y3	0	н	1	ReplA	1	66472.3847
3	ACEA	EILGHEIFFDWELP	3	y3	0	L	1	ReplA	1	5764.16228
4	ACEA	EILGHEIFFDWELP	3	y4	0	н	1	ReplA	1	101005.166
5	ACEA	EILGHEIFFDWELP	3	y4	0	L	1	ReplA	1	61.65238
6	ACEA	EILGHEIFFDWELP	3	y5	0	н	1	ReplA	1	90055.4993
7	ACEA	EILGHEIFFDWELP	3	y5	0	L	1	ReplA	1	472.691803
8	ACEA	TDSEAATLISSTID	2	y10	0	н	1	ReplA	1	43506.5425
9	ACEA	TDSEAATLISSTID	2	y10	0	L	1	ReplA	1	217.203553
10	ACEA	TDSEAATLISSTID	2	y7	0	н	1	ReplA	1	68023.0377
11	ACEA	TDSEAATLISSTID	2	y7	0	L	1	ReplA	1	725.284308
12	ACEA	TDSEAATLISSTID	2	y8	0	н	1	ReplA	1	68276.0489
13	ACEA	TDSEAATLISSTID	2	y8	0	L	1	ReplA	1	243.658527
			-	1	7			-		

For DDA, 'Fragment', 'ProductCharge' can be any one value, such as NA

MSstats as an external tool

Tools Help	
SRM Collider	
MSstats •	QC
Tool Store	Group Comparison
External Tools	Design Sample Size
Immediate Window	
Options	

- Use as an external tool
- Automatically run the functions for
 - Data processing : Preprocessing the data, Drawing the profile plots, Quality control plots, Condition plots
 - Group Comparison : Comparing between groups, Drawing the plots with results
 - **Design Sample Size** : Calculating the sample size
- For the beginner of R or other statistical tools, we can do statistical analysis with default options through Skyline easily.

Set up MSstats as external tool

â.	Insta	II from Tool Store						
MPPReport MS1Probe MSstats Population Variation Protter Qua SAR SProCoP	More Information: http://www.msstats.org/ Status:	Organization: Vitek Lab, Purdue University Authors: Meena Choi, Ching-Yun Chang, Dr. Timothy Clough, Dr. Olga Vil Languages: R(3.0.3), C#						
	Currently installed and fully updated (Version: 2.3.4).							
	Description:							
	MSstats is an R package global, targeted and data label-based (universal syr SWATH/DIA (data indep with complex designs (e.g course).	for statistical relative quantification of proteins and peptides in independent proteomics. It handles shotgun, label-free and thetic peptide-based) SRM (selected reaction monitoring), and bendent acquisition) experiments. It can be used for experiments g. comparing more than two experimental conditions, or a time						
	Input for MSstats requires transition-level identified and quantified peaks information,							
	Tool Store	Reinstall Close						

1. QC : Data processing and normalization

MSstats C	QC ×
Normalization method:	ОК
Equalize medians 🗸 🗸	
None	Cancel
Equalize medians	
Quantile Relative to global standards	

Data processing : Input with the report from Skyline

- get required report for analysis
- Log 2 or 10 transformation

Normalization

- None : no normalization is performed.
- Constant : make the same median of reference intensities across runs.
- Quantile : equalize the distribution of reference intensities across runs.
- Global Standards : applied to endogenous intensities. Equalize endogenous intensities of global standard protein across runs. Then apply the same between-run shifts to the remaining endogenous proteins.

Quality control plots

- Distribution of intensities per run
- Show potential systematic biases between mass spectrometry runs
- Show how the normalization works for all the proteins combined

Normalization method should be changed based on your design of experiment

Assume label-free SRM :

- most features are differently abundant

MS runs

MS runs

Normalization method should be changed based on your design of experiment

Assume label-free SRM :

- Need to concern normalization method in design stage

Profile Plot

- Visualize individual observations
- Show the potential source of variation, such as Run, Transition, Condition

CFAB

Check missing values

Good quality Profile plot. It shows the source of variation (Run, Condition, Transition)

Detect the problematical Run or Transition

Show the missing values (Disconnection)

2. Group Comparison : Test for differential abundance

• Hypothesis : Is there a difference in abundance between condition1 and condition2?

 H_0 : log fold change = 0 vs. H_a : log fold change \neq 0

Name of comparison: OK Disease-Healthy Cancel Nomalization method: Cancel Relative to global standards Allow missing peaks Control group: Healthy Include reference standards	-
Control group: Healthy v	
 Assume equal variance Include interference transitions Scope of biological replicate 	
Expanded Restricted Scope of technical replicate Expanded Restricted	

- Automatically detect the properties of the experimental design
 - Case-control study, Time-course study, Paired design
- Can choose the model
 - Presence of stable isotope labeled reference peptides
 - Assumption that all the features have equal noise variation between runs
 - Interference
 - contain interference transitions, need additional model interaction
 - with the desired scope of conclusion
 - Scope of biological replication : restricted / expanded
 - Scope of technical MS run replication : restricted/ expanded

Model-based conclusion

- Quantify the uncertainty
- Adjust p-values to control FDR
- Result will be saved in *TestingResult.csv*

Protein	Label	log2FC	SE	Tvalue	DF	pvalue	adj.pvalue
NP_001007697	Disease-Healthy	-3.232825973	0.388549983	-8.3202319	12	2.51E-06	3.01E-05
NP_001008724	Disease-Healthy	-0.356257059	0.402904721	-0.8842216	12	0.39394796	0.54027149
NP_001010968	Disease-Healthy	-0.308483858	0.366600666	-0.8414711	12	0.4165381	0.55538414
NP_001011908	Disease-Healthy	-1.436652196	0.262203616	-5.4791471	12	0.0001409	0.00135261
NP_001012027	Disease-Healthy	-0.093330917	0.388382375	-0.2403068	12	0.81414864	0.90881709
NP_001013967	Disease-Healthy	-1.015265095	0.3575297	-2.8396665	12	0.01490594	0.03736399
NP_001033064	Disease-Healthy	-1.522690232	0.432885764	-3.5175336	12	0.00424265	0.01392513
NP_001101333	Disease-Healthy	-1.162324993	0.331736191	-3.503763	12	0.0043516	0.01392513

Volcano plot

Visualization for multiple comparisons

3. Design sample size : Design of future experiment

- Use the current dataset for variance estimation
- Also calculate
 - The number of peptide per protein
 - The number of transition per peptide
 - Power : the probability of detecting a true fold changes
- Result will be saved in *SampleSizeCalculation.csv*

desiredFC	numSample	numPep	numTran	FDR	power	CV
1.25	4	3	5	0.05	0.9	0.004
1.275	3	3	5	0.05	0.9	0.005
1.3	3	3	5	0.05	0.9	0.005
1.325	2	3	5	0.05	0.9	0.007
1.35	2	3	5	0.05	0.9	0.007
1.375	2	3	5	0.05	0.9	0.006
1.4	2	3	5	0.05	0.9	0.006
1.425	2	3	5	0.05	0.9	0.006

MSstats Design Sam	ple Size 🗙
Normalization method: Relative to global standar Allow missing peaks Automatically calculate Sample size Peptides per protein 2	OK Cancel
 Transitions per peptide 3 Power 0.80 	
FDR: 0.05 Desired fold change	
Lower: Upper: 1.25 1.75 Use Defaults	

Sample size calculation and power

4. Progress report : msstats.log

- Includes
 - R version, loaded software libraries, Options selected by the user, Data structure MSstats recognizes, Completion of intermediate analysis steps, Warning messages
- Help troubleshoot potential problems

```
R.version.3.0.2..2013.09.25.
Platform: x86_64-apple-darwin10.8.0 (64-bit)
. . .
other attached packages:
[1] MSstats_2.1.4 Rcpp_0.10.4
. . .
MSstats - dataProcess function
The required input : provided - okay
New input format : made new columns for analysis - okay
Logarithm transformation: log2 transformation is done - okay
Balanced data format with NA for missing feature intensities - okay
MSstats - groupComparison function
labeled = TRUE
scopeOfBioReplication = restricted
scopeOfTechReplication = expanded
interference = TRUE
featureVar = FALSE
Time course design of experiment - okay
missing.action : nointeraction - okay
Finished a comparison for protein ACEA (1 of 45)
Finished a comparison for protein ACH1 (2 of 45)
Finished a comparison for protein ACON ( 3 of 45 )
```

...

1. MSstats : statistical tool for quantitative MS proteomics

- Workflow of MSstats
- MSstats as an external tool
 - Integration of Skyline improves analysis workflow
 - User interface

2. Study of poor quality of peaks

3. How to access MSstats

Rat Plasma : label-free SRM Data : Rat-plasma for Risk of heart disease

- Label-free SRM experiment
- High salt (7) vs. Low salt (7)
- 3 Technical replicates
- Total 42 injections (Runs)
- 48 proteins
- Comparison : High Salt Low Salt (Disease-Healthy)

Each	High salt (Disease)								Low salt (Healthy)									
Protein	Sub1				Sub7		Sub8				Sub14							
	T1	Т2	Т3				T1	Т2	Т3	T1	Т2	Т3				T1	Т2	Т3
Pep*Tran1	Х	Х	Х		•••		Х	Х	Х	Х	Х	Х		•••		Х	Х	Х
Pep*Tran2	Х	Х	Х		•••		Х	Х	Х	Х	Х	Х		•••		Х	Х	Х
Pep*Tran3	×	Х	X		•••		Х	Х	Х	Х	Х	Х		•••		Х	Х	Х

Examples of inconsistent (poor quality?) peptides

NP_001007697

Profile plot show the problematic peptides or transitions. We need to check what happen in this peptide.

22

NLGVVVAPHALR

CSSLLWAGAAWLR

Rat Plasma : label-free SRMLog2 FC and variationare different between before and after removing peptides

	All features			Onl	y NLGV (r	ed lines)	Only CSSL (black lines)			
	log2FC	SE	Adj p-value	log2FC	SE	Adj p-value	log2FC	SE	Adj p-value	
Fixed Subject	-2.6721	0.1439	<0.0001	0.8750	0.0260	<0.0001	-6.2272	0.2868	<0.0001	
Random Subject	-2.6701	0.2214	<0.0001	0.8750	0.2399	0.0066	-6.2187	0.4152	<0.0001	

Rat Plasma : label-free SRM Examples of inconsistent peptides

peptide: 3 - AIAYLNTGYQR_2 - DLTGFPQGADQR_2 - TVEHPFSVEEFVLPK_2

Profile plot show inconsistent pattern per peptides. We need to check that is there any measurement problem.

DLTGFPQGADQR

AIAYLNTGYQR

Rat Plasma : label-free SRM Log2 FC and variation are quite different depending on peptides.

	All features			On	ly DLTG ar	nd TVEH	Only AIAY			
	log2FC	SE	Adj p-value	log2FC	SE	Adj p-value	log2FC	SE	Adj p-value	
Fixed Subject	2.0642	0.0951	<0.0001	0.6167	0.0414	<0.0001	5.0812	0.0591	<0.0001	
Random Subject	2.0642	0.2966	<0.0001	0.6167	0.1137	0.0005	5.0812	0.7390	<0.0001	

Summary of poor quality peptides

- Profile plot show inconsistent pattern per peptides. We need to check that is there any measurement problem.
- Less certainty that you look at the correct peptide,
 - Due to different reasons such as any phosphorylation and modification in peptide level.
 - suggestion : re-measure in label-based way.
- Need to investigate further a subset of peptides that we find interesting for some reason.

1. MSstats : statistical tool for quantitative MS proteomics

- Workflow of MSstats
- MSstats as an external tool
 - Integration of Skyline improves analysis workflow
 - User interface
- 2. Study of poor quality of peaks
- 3. How to access MSstats

External tool in Skyline

MSstats

MSstats Version 2.3.4 [View All] Uploaded Sep 18, 2014 MSstats is an R package for statistical relative quantification of proteins and peptides in global, targeted and data-independent proteomics. It handles shotgun, label-free and label-based (universal synthetic peptide-based) SRM (selected reaction monitoring), and SWATH/DIA (data independent acquisition) experiments. It can be used for experiments with complex designs (e.g. comparing more than two experimental conditions, or a time course).

Support Board Input for MSstats requires transition-level identified and quantified peaks information, including protein id, peptide id, transition id, label type (if labeling is used), condition name, biological replicate id, MS run, and intensity (quantified by either peak area or peak apex). The input tables can be exported from other software for mass spectrometer data, such as Skyline. MSstats provides functionalities for three types of analysis: (1) data processing and visualization for quality control, (2) model-based statistical analysis, in particular testing for differential protein abundance between condition and estimation of protein abundance in individual biological samples or conditions on a relative scale, and (3) model-based calculation of a sample size for a future experiment, while using the current dataset as a pilot study for variance estimation. The statistical analysis is based on a family of linear mixed-effects models. The analysis produces tables with numerical outputs, as well as visualization plots. MSstats package, example datasets with R scripts and documentation are available at http://www.msstats.org.

Download MSstats Downloaded: 2128									
Documentation	Tool Information								
MSstatsTutorial.zip	Organization: Vitek Lab, Purdue University								
KnownIssues-Skyline-MSstatsV2.1.6.pdf	Authors: Meena Choi, Ching-Yun Chang, Dr. Timothy Clough, Dr. Olga Vitek								
MSstats-SkyimeExternalTool InstallationAndOserGuide-v2.1.6.pdf	Languages: R(3.0.3), C#								
	More Information: http://www.msstats.org/								

- From MSstats external tool webpage or 'Tool store'
- Automatic installations for all related software and packages
- One-click analysis
- Tutorial is available (https://skyline.gs.washington.edu/labkey/skyts/home/ software/Skyline/tools/details.view?name=Msstats)

msstats.org and MSstats google group

FOR USE VIA SKYLINE EXTERNAL TOOL

To use MSstats via a graphical user interface, as an external tool in Skyline, please see the info here,

Known issues and proposed solutions

FOR USE VIA A COMMAND LINE

From Source file: MSstats.daily

The development version of the package MSstats.daily is the most recent and is available here. The versioning of the main package is

- updated several times a year, to synchronise with the Bioconductor release.
- MSstats.daily 2.1.6 (Last updated March 25, 2014, requires R3.0.2).
- source file (License : Artistic-2.0)
- <u>zip file</u> (License : Artistic-2.0)
 <u>Changes since the previous version</u>
- ****** Known issues and proposed solutions

- News about Msstats
- MSstats.daily is available : development version available
- Tutorials for different workflows (under 'WORKFLOWS')
- Example datasets with R-scripts
- Related publications

* MSstats in Skyline with different version of R

By tvaisa...@gmail.com - 3 posts - 16 views - updated May 6

99

MSstats Shared privately 21 of 21 topics (2 unread) ★	Tags · Manage · Members · About ④
Welcome to google group for MSstats!!	
Here is the place to share your experience, difficulties, solution, and suggestion about R-package, MSstat	ts!
Edit welcome message Clear welcome message	
★ MSstats 2.1.3 released!! By me - 9 posts - 84 views - updated Apr 18 ∓	P
MSstats external tool in Skyline v2.1.6 release! By me - 5 posts - 26 views - updated May 8	R

- Announce new release or news in the mailing list
- Question and answer
- Discussion and suggestion

1.

Acknowledgements

Purdue University

- o Prof. Olga Vitek
- o Mike Cheng
- o Veavi Chang
- o Tim Clough
- o Danni Yu
- o Kyle Bemis
- o April Harry
- o Robert Ness

University of Washington

- Prof. Mike MacCoss and Lab
- o Brendan MacLean
- Yuval Boss

ETH Zürich

- o Prof. Ruedi Aebersold
- o Ruth Hüttenhain
- o Silvia Surinova
- Eduard Sabido
- o Olga Schubert
- o Hannes Röst

Tutorial : 'choi-shortCourse-MSstatsTutorial.pdf'

Poster 069:

Statistical Elimination of Spectral Features with Large Between-Run Variation Enhances Quantitative Protein-Level Conclusions in Experiments with Data-Independent Spectral Acquisition

Lin-Yang(Mike) Cheng¹, Ching-Yun Chang¹, Yansheng Liu², Hannes Rost², Meena Choi¹, Ruedi Aebersold², Olga Vitek¹;¹ Purdue University, West Lafayette, Indiana;² Department of Biology, ETH Zurich, Switzerland, Faculty of Science, University of Zurich, Zurich, Switzerland