INTRODUCTION TO MSSTATS

Olga Vitek

College of Science
College of Computer and Information Science

Northeastern University

Example: A label-free experiment Question: which proteins change in abundance?

T. Clough et al. BMC Bioinformatics., 2012

A typical analysis workflow (also in MSstats)

T. Clough et al. BMC Bioinformatics, 2012

A typical analysis workflow (also in MSstats)

T. Clough et al. BMC Bioinformatics, 2012

A typical analysis workflow (also in MSstats)

Experimental design

A typical analysis workflow (also in MSstats)

Statistical modeling

Model-based conclusions

Experimental design

A typical analysis workflow (also in MSstats)

A typical analysis workflow (also in MSstats)

Finding differentially abundant proteins

Simple example: one protein, one feature per protein, label-free

H0: 'status quo', no change in abundance, $\quad \hat{\mathbf{G}}_{\mathbf{1}}-\hat{\mathbf{G}}_{\mathbf{0}}=\mathbf{0}$ Ha: change in abundance, $\hat{\mathbf{G}}_{\mathbf{1}}-\hat{\mathbf{G}}_{\mathbf{0}} \neq \mathbf{0}$

$$
\text { observed } t=\frac{\hat{\mathbf{G}}_{1}-\hat{\mathbf{G}}_{0}}{\sqrt{\text { Estimate of variation }}}
$$

Linear mixed models describe Normal distributions

Labeled reference peptides help separate the biological and the technological variation

Label-based SRM workflow

Analysis of heavy/light peak pairs

A full linear mixed model for an experiment with labeled reference peptides

Example: ovarian cancer dataset

'Run' pairs endogenous and reference transitions from a same run

Check model assumptions

A typical analysis workflow (also in MSstats)

Experimental design

Model-based group comparisons

- Quantify the uncertainty
- Adjust p-values to control FDR

Relative protein quantification

- In one sample
+ In one condition

C.-Y. Chang et al. MCP, 2012

A typical analysis workflow (also in MSstats)

Experimental design

QC and normalization

Statistical modeling

Model-based conclusions

Experimental design

Model-based group comparisons

- Quantify the uncertainty
- Adjust p-values to control FDR

Relative protein quantification

- In one sample
- In one condition

Color Key

A typical analysis workflow (also in MSstats)

Experimental design

Model-based group comparisons

- Quantify the uncertainty
\uparrow Adjust p-values to control FDR
Relative protein quantification
- In one sample
- In one condition

Model-based conclusions

Comparisons between conditions are estimated by linear combinations of model terms

A typical analysis workflow (also in MSstats)

Experimental design

Use the dataset to improve:

- Subject selection: matching
- Resource allocation: blocking
- Calculation of sample size

Linear mixed effects models are required to calculate the sample size and the power

Need to know in advance:

q - the False Discovery Rate $\mathrm{m}_{\mathbf{0}} / \mathrm{m}_{\mathbf{1}}$ - anticipated ratio of unchanging features
β - statistical power (i.e. probability of a true positive discovery)

Oberg and Vitek, JPR, 2009
$\boldsymbol{\Delta}$ - anticipated (log-) fold change
$\sigma_{\text {Indiv }}^{2}$ and $\sigma_{\text {Error }}^{2}$ anticipated variance

