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9:00-10:30

10:30-10:45

10:45-12:00

12:00-1:00

1:00-2:30

2:30-2:45

2:45-4:00

Intro to statistical methods. Intro to Skyline.
Refreshments.

Case study in Skyline.

Lunch break on your own.

Case study in Skyline. Introduction to MSstats.
Refreshments

Case study in MSstats, open time for questions
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WHY STATISTICS?

* Variation and uncertainty are unavoidable

lechnical variation: sampling handling, storage, processing
Instrumental variation: elution time, ion suppression
Signal processing: peak boundaries, identity, intensity

Biological variation: variation in protein abundance

"Statistics: a body of methods for making wise decisions in
the face of uncertainty.” (W. A. Wallis)



OUTLIN

» Translate scientific question Into statistics
Statistical terms for ‘biomarker’ (or ‘signature’)

* bxperimental design
Replication, randomization, blocking

» Basic data analysis
Simple summaries and models




STATISTICAL GOAL |: CLASS

DISCOVERY

Discover proteins or subjects with similar patterns

« No known class labels
* E.g, no healthy’ or 'disease’
- All variation treated equally
* No error rates

+ Can't find something
meaningful If unsure
what we look for

« Best used for visualization
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Gehlenborg et al, Nature Methods, 2010



STATISTICAL GOAL 2: CLASS COMPARISON

Compare mean abundances in subject groups

- Known class labels
14
» Compare group averages g .
- Report p-values, posterior 3 12 -
bpr c
probabilities etc 3
T 10
O
-
- Useful when compare g
oroups of subjects 2 :
* Best used for basic biology o

» Initial (Tier Ill) biomarker * *
discovery screen




DIFFERENTIALLY ABUNDANT PROTEINS

- NOT ALWAYS BIOMARKERS
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Differentially abundant Differentially abundant

and predictive and not predictive

. - Differentially .
Single protein. obundant % Predictive




BIOMARKER PROTE

ALWAYS DIFFERENT
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STATISTICAL GOAL 3: CLASS PREDICTION

Classity each subject into a known group

 Known class labels
 Predict individual subjects

* Report misclassification
error (sensrtivity, specificity,
predictive value etc)

« Useful when focus on an
individual

- Tierlorlierll biomarker
discovery studies

Protein 2
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OUTLIN

» Translate scientific question Into statistics
Statistical terms for ‘biomarker’ (or ‘signature’)

* bxperimental design
Replication, randomization, blocking

» Basic data analysis
Simple summaries and models




A STATISTICIAN'S VIEW OF THE EXPERIMENT

(a) Random sample of (b) Noisy measurements

/%dividuam — \‘

~ Healthy population Healthy individuals Healthy individuals
(i.e. all healthy individuals) in the study in the study

(a) Random sample of

~ individuals () Noloymeasurements
uals

Disease individ Disease individuals
in the study in the study

Disease population
(i.e. all disease individuals)

Large populations of Randomly selected Noisy measurements
individuals individuals on selected
individuals
Dangers:

Bias: conclusions systematically differ from truth
Inefficiency: unnecessary variation in the data




DEFINITION OF BIAS AN

D IN

-FRICIENCY

Subject selection Spectral gacquisition

Healthy population Healthy subjects

U abundance in

(1 mean abundance _
subject k

in population

T

Subect selection Spectral acquisition

Disease population Disease subjects

abundance in
Hak subject k

(o mean abundance

|
|
|
|
|
|
:
in population :
|
|

T
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Statistical inference: conclusions on [t1 — U2

Spectra

observed peak
Y, ) "
Intensities

Spectra

Y911 observed peak
intensities

A

Statistical model:
properties of
Yi.— Y.

Bias: Y.i.—Y,. systematically different from 1k — U2k

Inefficiency: Large Var(Yy.. —Yo.)




DEFINITION OF BIAS AND INEFFICIENCY

Subject selection Spectral gacquisition

T

|
|
|
| Healthy subjects

Can be prevented by 3
principles of experimental

design

~ -

Statistical inference: conclusions on [t1 — U2

Bias: Y.i.—Y,. systematically different from 1k — U2k

Inefficiency: Large Var(Yy.. —Yo.)
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(1) carries out
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(a) No replication

Log(feature abundance)

Healthy  Disease

| REPLICATION

the Iinference and (2) minimizes inefficiencies

8 (b) A significant difference
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(c) Not a significant difference
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Healthy  Disease

Two levels of randomness imply two types of replication:

Biological replicates: selecting multiple subjects from the population

lechnical replicates: multiple runs per subject

Oberg and Vitek, J. Proteome Research, 8, 2009



Log(feature abundance)

PRINCIPI

- 2: RAN

No randomization

Prevents
(a) Sequential acquisition
A o dy
@) d4
o dj YD
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Healthy  Disease

= confounding
= bias

Log(feature abundance)

DOMIZATION
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(b) Complete randomization
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Healthy  Disease
Complete randomization
= no bias

Two levels of randomness imply two types of randomization:

Biological replicates: random selection of subjects from the population

Technical replicates: random allocation of samples to all processing steps

Oberg and Vitek, J. Proteome Research, 8, 2009
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- LACK OF RANDOMIZATION

Hu, Coombes, Morris, Baggerly, Briefings in Functional Genomics, 2005

e Serum samples with five types of cancer

e SELDI-TOF MS
¢ normalized, peak picked

Hierarchical clustering of samples

Cancer subtype

confounded with \

Same time-
based clustering

on the QC
samples!

time
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PRINCI

°LE 3: BLOCKING

Helps reduce both bias and inefficiency
(b) Complete randomization (c) Day = block
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Complete randomization Block-randomization
= 1nflated variance = restriction on randomization

= systematic allocation

Two levels of randomness imply two types of blocks:
Biological replicates: subjects having similar characteristics (e.g. age)

Technical replicates: samples processed together (e.g. in a same day)

Oberg and Vitek, J. Proteome Research, 8, 2009



= XAMPLE: LACK OF

Hu, Coombes, Morris, Baggerly, Briefings In

® Serum samples with two types of cancer
e SELDI-TOF MS, 3 fractions
¢+ normalized, peak picked

BLOCKING

-unctional Genomics, 2005
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MATCHING

Blocking with respect to
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Complete randomization
= 1nflated variance

niological risk factors

Block-randomization
= restriction on randomization
= systematic allocation

Kall and Vitek, PLoS Computational Biology, 7, 2011
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Block-randomized selection of su

bjects from repository

Disease group

Control Stable angina  Unstable angina NSTEMI STEMI
> 58 y.o0; Female 354 300 49 39 29
: : > 58 y.0; Male 701 843 143 86 54
Stratification | “ye’ 0. Female 80 56 5 5 8
< 58 y.0; Male 264 190 34 23 27
Counts in the initial repository of samples
Disease group
Control Stable angina  Unstable angina NSTEMI STEMI
> 58 y.o; Female 3 3 3 3 3
: : > 58 y.o; Male 3 3 3 3 3
Stratification < 58 y.o; Female 2 2 2 2 2
< 58 y.0; Male 2 2 2 2 2

Counts of subjects included in the study

Mass spectra acquired without technical replication
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Blocking with respect -

Synthetic

standards SILAC

Log(feature abundance)

Healthy

run 1

Disease

run 2
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Multiplexing reduces both bias and variance
(assuming that extra sample handling does not introduce extra variation)

(O Mass spectrometry run

transition

average of log-intensities

paired log-intensities
of Land H

difference of log-intensities
of Land H
= log-ratios of L over H

run
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» Translate scientific question Into statistics
Statistical terms for ‘biomarker’ (or ‘signature’)

* bxperimental design
Replication, randomization, blocking

» Basic data analysis
Simple summaries and models




TWO-5AM

Simple example: label-free ex

PLE I-TES']

beriment, one feature/protein
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Log(feature abundance)

3

T

Sample means
In each group

Ha: change in abundance, G, — Gy #0

G1 - Go

v Estimate of variation

observed t =

HO: ‘status quo’, no change in abundance, G — Gg = 0/

V/si/n1 £ s3/n2 -

7

Y1. — Yo

\

S~ ———  Number of
n1 _ replicates
= R0 R
1=1 Sample variance



TWO-5AM

Simple example: label-free ex

°LE

beriment, one feature/protein

-TEST
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Log(feature abundance)

3

T

Ha: change in abundance, G, — Gg # 0

G1 - Go

v Estimate of variation

observed t = =

HO: ‘status quo’, no change in abundance, G — Gg =0

Properties of the
means

2
51

ni

Variance of the
sampling
distribution of first
mean

2
51

ni

Standard error
of the first
mean




ASSUMPTION: NORMAL DISTRIBUTION

As n Increases, the mean is less variable and more Normal

This is the Central Limit Theorem

Population distribution
Normal Skewed Uniform Irregular

Probability

of the data
Samplmg distribution of sample mean

Repeatedly

selecting n
data points
and
calculating
means

Simulated example
Krzywinski and Altman, Points of Significance Collection, Nature Methods



Frequency

-FFECT OF SAMPLE SIZE

As N Increases, the estimates stabilize
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Simulated example
Krzywinski and Altman, Points of Significance Collection, Nature Methods



FINDING DIFFERENTIALLY ABUNDANT PROTEINS

False positive rate
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HO: ‘status quo’, no change in abundance, Gi— Gg =0 Distribution of the a _=_False
Ha: change in abundance, G, — Go +# 0 score if HO is true  Positive Rate
observed t = . &1~ Go ——
v Estimate of variation a/? a/2
no difference ¢4\ dent distribution | | expected t |
N /

Reject HO




FINDING DIFFERENTIALLY ABUNDANT PROTEINS

P-value
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HO: ‘status quo’, no change in abundance, Gi— Gg =0 Distribution of the p = p-value
Ha: change in abundance, G, — Gy #0 score if HO is true
observed t = G1 — Go 0/2 p/2
v Estimate of variation
no difference Stud d; tbuti :
~ tudent distribution expected t

-observed t observed t




WITH SMALL SAMPLE SIZE, P-VALUES ARE UNSTABLE

Population A/

0 05

- Repeatedly sampling data leads to different results

* The problem worsens when testing many proteins
*  Solutions:

- lLarger sample size
- Adjustment for multiple testing

Simulation 1 Simulation 2 Simulation 3 Simulation 4
Estimated
effect size  1.46 (P = 0.005) —0.08 (P =0.82) 0.08 (P = 0.85) 0.74 (P = 0.09)
3
o
o ® o
=) —_— °
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0 - oo —g.:— _— e %
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o
_2 oo
A B A B A B A B

Simulated example
Halsey, Curran-Everett, Volwer and Drummond, Nature Methods, 2015



MULTIPLE TESTING

Control False Positive Rate for two proteins

For each protein:

HO: ‘status quo’, no change in abundance, Gi— Gg =0

Ha: change in abundance, G, — G # 0

G1 - Gy

v Estimate of variation

observed t =

no difference

~ Student distribution

The area = FPR = a

a/2

/

a/2

t for protein 1




MULTIPLE TESTING

Control False Positive Rate for two proteins

For each protein:

HO: ‘status quo’, no change in abundance, Gi— Gg =0

Ha: change in abundance, G, — G # 0

t for protein 2

G1 - Gy

observed t =

v Estimate of variation

no difference

~ Student distribution

a/2

/

a/2

__/

d

The area = FPR =

a




MULTIPLE TESTING

Control False Positive Rate for two proteins

For each protein:
HO: ‘status quo’, no change in abundance, Gi— Gg =0
Ha: change in abundance, G, — G # 0

t for protein 2

G1 - Gy

v Estimate of variation

observed t =

a/2

no difference

~ Student distribution

® P(at least one incorrect
decision) > a a/2

® The univariate FPR does

not hold for the list a/2 a/2

® Neced to define a t for protein 1

multivariate error rate The Cqmblned
areais > al




MULTIPLE TESTING

Control False Positive Rate for two proteins

For each protein:
HO: ‘status quo’, no change in abundance, Gi— Gg =0
Ha: change in abundance, G, — G # 0

t for protein 2

G1 - Gy

v Estimate of variation

observed t =

a/2

no difference

~ Student distribution

® P(at least one incorrect

decision)>a | a2 | tdacaaaaa--- -
® The univariate FPR does P '
not hold for the list
® Neced to define a t for protein 1
The combined

multivariate error rate

areais > a!
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Change criteria from False Positive Rate to False Discovery Rate
# of proteins with # of proteins with Total
no detected difference detected difference
# true non-diff. proteins U \Y% mg
# true diff. proteins T S mij — m — Mg
Total m— R R m
® False discovery rate (FDR)
An 1nfinite number of measurements on same proteins
FDR: the average proportion of false discoveries
\Y
FDR — E [ ] 30+ © oamm oo oo e» ®wo
max(R, 1) E downregulated upregulated
2 proteins . proteins
.Tg. ’q? 20+ ® . ’
X 3
Bonferroni approach @ Z o
) , 10-
controls family-wise error % .
rate = P (V >0) S y




ALTERNATIVE TO TESTING: CONFIDENCE INTERVALS

Not all error bars are made the same

a Population distribution b 1001 . o
501 s.e.m. HeH
301 95% Cl e+
< 201 -9
u o qu 107 |—|—¢—|—|
Sample means with 95% CI B 9 — & —
' > ' QL 8 ————
o . g.
P | . S 7 1 .
' - | ¢ n 6 - ¢
- o
® { ’ 5 A o
: o . 4 - ?
® . . 3 ¢
e :
r—: T T T
P 0 o0 20
-

Error bar size

A 95% CIl means that if we repeatedly
collect data and draw confidence
intervals, then 95% of them will contain
the true mean

Cl are wider than bars indicating
standard error of the mean!

Width of the intervals depends
on the sample size

Simulated example
Krzywinski and Altman, Points of Significance Collection, Nature Methods



“RROR BARS PROVIDE DIFFERENT INSIGHT

Absence of overlap does not always mean stat. significance

a Sample mean b Sample mean
0 1.0 p 0 1.0 20 p
sd——e—— _ 0.0003 - 1 0.05
s.e.m. ¢ ; . - 0.17 | ¢ e 0.05
95% Cl | 5 ) 10.005 : - . ~0.05
Sample mean P Sample mean
0 1.0 0 1.0
n=10 |  EEEE—— | | —
I v I I L { 01 ' v: Ic |
— . 0.05
—— e 0.005
— e 0.001
s.e.m. error bars 95% ClI error bars

Simulated example
Krzywinski and Altman, Points of Significance Collection, Nature Methods
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Martin Krzywinski & Naomi Altman
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Techniques for life scientists and chemists
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Points of significance: Importance of being

uncertain

Martin Krzywinski & Naomi Altman

Affiliations

Nature Methods 10, 809-810 (2013) | doi:10.1038/nmeth.2613
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Martin Krzywinski & Naomi Altman

Points of Significance: Error bars
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Nature Methods 10, 921-922 (2013) | doi:10.1038/nmeth.2659

Points of significance: Power and sample size
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Nature Methods 10, 1139-1140 (2013) | doi:10{ f{@StS

Martin Krzywinski & Naomi Altman

s of significance: Significance, P values and t-




