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WHY STATISTICS?

• Variation and uncertainty are unavoidable
• Technical variation: sampling handling, storage, processing
• Instrumental variation: elution time, ion suppression
• Signal processing: peak boundaries, identity, intensity
• Biological variation: variation in protein abundance 

"Statistics: a body of methods for making wise decisions in 
the face of uncertainty." (W. A. Wallis)



OUTLINE

• Translate scientific question into statistics
• Statistical terms for ‘biomarker’ (or ‘signature’)

• Experimental design
• Replication, randomization, blocking

• Basic data analysis
• Simple summaries and models



STATISTICAL GOAL 1: CLASS DISCOVERY

• No known class labels
• E.g., no ‘healthy’ or ‘disease’
• All variation treated equally
• No error rates

• Can’t find something 
meaningful if unsure 
what we look for
• Best used for visualization

Can look for patterns in
both samples and genes

Gehlenborg et al, Nature Methods, 2010

7-3

Discover proteins or subjects with similar patterns



STATISTICAL GOAL 2: CLASS COMPARISON

• Known class labels
• Compare group averages
• Report p-values, posterior 

probabilities etc

• Useful when compare 
groups of subjects
• Best used for basic biology 
• Initial (Tier III) biomarker 

discovery screen

Compare mean abundances in subject groups
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DIFFERENTIALLY ABUNDANT PROTEINS 
ARE NOT ALWAYS BIOMARKERS
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Observed Systematic Random deviation
feature = mean signal + due to all sources

intensity of disease group of variation

yij = Group meani + Errorj(i)
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BIOMARKER PROTEINS ARE NOT 
ALWAYS DIFFERENTIALLY ABUNDANT

Not differentially 
abundant but 

predictive
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STATISTICAL GOAL 3: CLASS PREDICTION

• Known class labels
• Predict individual subjects
• Report misclassification 

error (sensitivity, specificity, 
predictive value etc)

• Useful when focus on an 
individual
• Tier I or Tier II biomarker 

discovery studies

Classify each subject into a known group

Linear 
prediction 

rule

Quadratic 
prediction 

rule

General 
prediction 

rule



OUTLINE

• Translate scientific question into statistics
• Statistical terms for ‘biomarker’ (or ‘signature’)

• Experimental design
• Replication, randomization, blocking

• Basic data analysis
• Simple summaries and models



A STATISTICIAN’S VIEW OF THE EXPERIMENT

Large populations of 
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Noisy measurements 
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Dangers: 
Bias: conclusions systematically differ from truth 
Inefficiency: unnecessary variation in the data



DEFINITION OF BIAS AND INEFFICIENCY

Statistical inference: conclusions on 
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DEFINITION OF BIAS AND INEFFICIENCY
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Subject selection Spectral acquisition

Subect selection Spectral acquisition

Healthy population

Disease population Disease subjects

Spectra

SpectraDisease population

Healthy population Healthy subjects

µ · 1 ·
µ · 2 ·
µ · 1 k
µ · 2 k
Y
i 1 k l

Y
i 2 k l

µ 2 · ·
µ 1 · ·

Systematic deviation due to
Observed Expected Random
feature = reference + peptide + condition + feature � condition + biological + measurement
intensity abundance feature interaction replicate error

y
ijkl

= µ111 + F
i

+ C
j

+ (F � C)
ij

+ E
k

+ ⇥
ijkl

iid⇥ N
�
0, �2

Error

�

1

µ · 1 ·
µ · 2 ·
µ · 1 k
µ · 2 k
Y
i 1 k l

Y
i 2 k l

µ 2 · ·
µ 1 · ·

Systematic deviation due to
Observed Expected Random
feature = reference + peptide + condition + feature � condition + biological + measurement
intensity abundance feature interaction replicate error

y
ijkl

= µ111 + F
i

+ C
j

+ (F � C)
ij

+ E
k

+ ⇥
ijkl

iid⇥ N
�
0, �2

Error

�

1

mean abundance 
in population

mean abundance 
in population

abundance in 
subject k

observed peak 
intensities

observed peak 
intensities

Biological variation Random sampling Noisy measurementsDescription of 
non-systematic

variation

Probabilistic
statements
regarding
unknowns

Population-level testing
Subject-level testing

Subject-level quantification

Description of 
systematic
variation

(a) (b)

+

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

1

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

1

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1k

µ2 k

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

1

abundance in 
subject k

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1k

µ2k

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

1

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1k

µ2k

µ · 1 ·
H0 : µ2 � µ1 = 0
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

1

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1k

µ2k

µ · 1 ·
H0 : µ2 � µ1 = 0

H0 : µ̄2· � µ̄1· = 0

H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

1

µ · 1 ·
H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1k

µ2k

µ · 1 ·
H0 : µ2 � µ1 = 0

H0 : µ̄2· � µ̄1· = 0

µ1k, µ2k

H0 : µ · 2 · � µ · 1 · = 0

µ · 2 k � µ · 1 k
?
= 0

µ · j k
H0 : µ̄ · 1 k � µ̄ · 2 k = 0
Y i 1 k l

Y i 2 k l

µ 2 · ·
µ 1 · ·
µ1

µ2

1

Statistical model: 
properties of

Bias:

Observed Systematic Random deviation
feature = mean signal + due to all sources
intensity of disease group of variation

yij = Group meani + Errorj(i)
� N

�
0,�2

�

Var(D̂1 � D̂2) = 2
nb

ngnpns

�
⇥2
Indiv + ⇥2

Error

⇥
(13)

Reference:

Var(D̂1 � D̂2) = 2

⇤
⇥2
Indiv + 2⇥2

Error

I

⌅
(14)

Loop:

Var(D̂1 � D̂2) =
8

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(15)

if two disease groups are in a same block, and

Var(D̂1 � D̂3) =
12

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(16)

µ1k � µ2k (17)
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PRINCIPLE 1: REPLICATION
(1) carries out the inference and (2) minimizes inefficiencies
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Two levels of randomness imply two types of replication:
◆ Biological replicates: selecting multiple subjects from the population
◆ Technical replicates: multiple runs per subject 

Oberg and Vitek, J. Proteome Research, 8, 2009
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PRINCIPLE 2: RANDOMIZATION
Prevents bias

Oberg and Vitek, J. Proteome Research, 8, 2009

yDd
3

yH

Healthy Disease

(a) Sequential acquisition

F
e

a
tu

re
 i
n

te
n

s
it
y

d
2

d
2

d
1

d
1

d
4

d
4

d
3

Healthy Disease

d
2

d
2

d
3

d
4

(c) Day = block

F
e

a
tu

re
 i
n

te
n

s
it
y

(b) Complete randomization

yH

yD

Healthy Disease

F
e

a
tu

re
 i
n

te
n

s
it
y

d
2

d
2

d
4

d
4

d
3

d
3

d
1

d
1

No randomization 
= confounding

= bias

Complete randomization 
=  no bias

Two levels of randomness imply two types of randomization:
◆ Biological replicates: random selection of subjects from the population
◆ Technical replicates: random allocation of samples to all processing steps  
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● Serum samples with five types of cancer
● SELDI-TOF MS
◆ normalized, peak picked

EXAMPLE: LACK OF RANDOMIZATION
Hu, Coombes, Morris, Baggerly, Briefings in Functional Genomics, 2005

Cancer subtype 
confounded with 

time

Time of spectral acquisition

Same time-
based clustering 

on the QC 
samples!

distance metric based on the Pearson
correlation coefficient. Surprisingly, we
observed that simple clustering produced
six groups instead of five (see the top
panel of Figure 1). We investigated the
clinical information and it turned out that
the resulting six clusters matched the run
dates of the samples, rather than the
biologically different groups (see the
bottom panel of Figure 1). We found that
the serum samples from patients
diagnosed with one cancer subtype had
been run at least a month before all of the
rest, and that the run date affected all of
the sample spectra to some degree. We
were able to verify this by examining the
spectra from a material that is commonly
used for quality control (QC), which the
researchers had run concurrently. The
spectra from the QC material showed the
same clustering pattern as the biological
samples. We attempted to apply simple
additive shifts to align the QC samples to
fix the problem, but failed.

Comments
Proteomic profiles are not yet very
reproducible over time, and the intensities

are semiquantitative at best. To focus on
the biological contrasts between groups of
tissue samples, we recommend that
investigators include some members from
each contrasting sample in each
laboratory-run group. If the run groups
are large, simply randomising the run
order will achieve this. Running all
samples ‘as they come in’ is not yet a good
way to operate experiments in proteomic
mass spectrometry.

Case study 2: Collection
protocols
Another group of researchers conducted
an experiment at M. D. Anderson on
tissue samples from 50 patients with
cancer, which were believed to include
two subtypes of the disease. The
researchers applied three different
fractionation protocols (identified as
myo25, myo70 and bsa70) to produce
three different spectra per sample.
Splitting a sample into three fractions can
better highlight different subsets of the
proteins.
The disease subtype information was

‘stripped out’ and the resultant blinded

Run date effects can be
larger than biological
effects

Figure 1: Detection of
subtypes of cancer

324 & HENRY STEWART PUBLICATIONS 1473-9550. BRIEF INGS IN FUNCTIONAL GENOMICS AND PROTEOMICS . VOL 3. NO 4. 322–331. FEBRUARY 2005

Hu et al.

Hierarchical clustering of samples



PRINCIPLE 3: BLOCKING
Helps reduce both bias and inefficiency

Oberg and Vitek, J. Proteome Research, 8, 2009

Complete randomization 
=  inflated variance

Block-randomization  
= restriction on randomization

= systematic allocation
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Figure 3: (a) Sequential acquisition creates a confounding e�ect: the di�erence in group means
can be due to both di�erences between groups and di�erences between days. (b) Complete ran-
domization removes the confounding e�ect. The variance within each group is now a combination
of the biological di�erence and of the day-to-day variation. (c) Paired design uses day as a block of
size 2. The design allows one to compare di�erences between individuals from two groups within a
block.

Observed Systematic Random deviation
feature = mean signal + due to all sources

intensity of disease group of variation

yij = Group meani + Errorj(i)

� N
�
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Figure 4: Statistical model for a completely randomized design with a single mass spectrum
replicate per patient. i indicates the index of a disease group, and j(i) the index of a patient within
the group. All Errorj(i) are assumed independent.
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Figure 5: Statistical model for a mixed e�ects analysis of variance (ANOVA). i is the index of
a disease group, j(i) the index of a patient within the group, k(ij) is the index of the sample
preparation within the patient, and l(ijk) is the replicate run. Indiv(Group)j(i), Prep(Indiv)k(ij)

and Errorl(ijk) are all independent.
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Two levels of randomness imply two types of blocks:
◆ Biological replicates: subjects having similar characteristics (e.g. age)
◆ Technical replicates: samples processed together (e.g. in a same day)  
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EXAMPLE: LACK OF BLOCKING
Hu, Coombes, Morris, Baggerly, Briefings in Functional Genomics, 2005

● Serum samples with two types of cancer
● SELDI-TOF MS, 3 fractions
◆ normalized, peak picked

dataset was brought to our group for
analysis. The aim of the analysis was to
perform unsupervised clustering of the
data to see if the two subtypes could be
identified correctly and blindly. We
preprocessed the spectral data in a manner
similar to that described in the first case
study, including the methods of SPDBC
and normalisation to the total ion current.
We analysed the spectra within each of
the three fractions separately. After
aligning the peaks across the spectra
within each fraction and filtering out the
noise, we identified 172, 130 and 130
peaks, respectively, in the fractions from
the myo25, myo70 and bsa70 protocols.
We then performed hierarchical
clustering analyses in each of the three
fractions. The results seemed very
exciting, with two distinct clusters clearly
identified in each fraction. We also
observed that the myo25 and myo70
fractions produced the same two clusters,
and that clustering from the bsa70 fraction
was identical to the others, except for the
classification of a single sample. These
results were communicated and the data
were unblended; however, further
exploration showed that the split that we
had found did not match the subtypes
assumed by the investigators. Rather, the

split matched very closely with the day on
which the sample collection protocol had
been changed midway through the
experiment. Figure 2 illustrates the
clustering pattern within the fraction
bsa70.

Comments
Many features of an experiment affect
protein expression profiles, and we have
not yet been able to identify all of them.
We recommend that investigators define a
single protocol and follow it throughout
the experiment. This will reduce the
number of factors that are of concern
during the data analysis. If a protocol must
be altered, the investigator should make
sure that samples representing both sides
of the contrast of interest are present for
each run batch that the laboratory
processes, and should accordingly be
prepared to analyse the data in batches.

Case study 3: Calibration and
sample handling
A third group of researchers at M. D.
Anderson collected urine samples from
individuals for proteomic analysis in the
study of cancer. The study focused on five
categories of human subjects: disease-free
individuals, patients presenting with low-

Changes in collection
protocols can have large
effects

Figure 2: Discovery of
clusters in data from
bsa70 fraction of tumour
samples

& HENRY STEWART PUBLICATIONS 1473-9550. BRIEF INGS IN FUNCTIONAL GENOMICS AND PROTEOMICS . VOL 3. NO 4. 322–331. FEBRUARY 2005 32 5

The importance of experimental design in proteomic mass spectrometry experiments
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MATCHING
Blocking with respect to biological risk factors

Block-randomization  
= restriction on randomization

= systematic allocation

Complete randomization 
=  inflated variance

Käll and Vitek, PLoS Computational Biology, 7, 2011



EXAMPLE
Block-randomized selection of subjects from repository

Disease group
Control Stable angina Unstable angina NSTEMI STEMI

Stratification

� 58 y.o; Female 354 300 49 39 29
� 58 y.o; Male 701 843 143 86 54

< 58 y.o; Female 80 56 5 5 8
< 58 y.o; Male 264 190 34 23 27

Table 1: Number of serum samples from subjects with coronary artery disease and controls, available for
each combination of age group, gender and disease group.

Disease group
Control Stable angina Unstable angina NSTEMI STEMI

Stratification

� 58 y.o; Female 3 3 3 3 3
� 58 y.o; Male 3 3 3 3 3

< 58 y.o; Female 2 2 2 2 2
< 58 y.o; Male 2 2 2 2 2

Table 2: Number of serum samples selected for the proteomic experiment. Each disease group has the same
number of subjects for each combination of age group and gender.

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 3: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m identified proteins. m and m0

are fixed, and R, S, T , U and V are random. Only m and R are observed.

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# of proteins in the set s�K K s
# of proteins not in the set (m� s)� (R�K) R�K m� s

Total m�R R m

Table 4: Outcomes of the gene set enrichment analysis (GSEA) for one protein set. m is the total number of proteins
(also called the “universe”), and s is the total number of proteins in the pre-specified set. The Hypergeometric test
is conditional on the number of di�erentially abundant proteins R. It tests the null hypothesis that the number of
di�erentially abundant proteins in the set K is as expected by random chance, against the alternative hypothesis
that K is larger than as expected by random chance.
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Counts in the initial repository of samples

Counts of subjects included in the study

Mass spectra acquired without technical replication



MULTIPLEXING
Blocking with respect to mass spectrometry run

Multiplexing reduces both bias and variance
(assuming that extra sample handling does not introduce extra variation)

Synthetic 
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OUTLINE

• Translate scientific question into statistics
• Statistical terms for ‘biomarker’ (or ‘signature’)

• Experimental design
• Replication, randomization, blocking

• Basic data analysis
• Simple summaries and models



TWO-SAMPLE T-TEST
Simple example: label-free experiment, one feature/protein

Disease group
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# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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Ĝ1 � Ĝ0 ⇥= 0 (2)

FDR = E
�

V
max(R,1)

⇥
. (3)

FWER = P [V > 0] . (4)

FPR = E
�

V
m0

⇥
. (5)

1

# of features with # of features with Total
no detected di�erence detected di�erence

# true non-di�. features U V m0

# true di�. features T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.

�

⇥

�
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TWO-SAMPLE T-TEST
Simple example: label-free experiment, one feature/protein
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size. Notice that it is still possible for a sample mean to fall far 
from the population mean, especially for small n. For example, 
in ten iterations of drawing 10,000 samples of size n = 3 from the 
irregular distribution, the number of times the sample mean fell 
outside μ ± s (indicated by vertical dotted lines in Fig. 3) ranged 
from 7.6% to 8.6%. Thus, use caution when interpreting means 
of small samples.

Always keep in mind that your measurements are estimates, which 
you should not endow with “an aura of exactitude and finality”5. The 
omnipresence of variability will ensure that each sample will be dif-
ferent. Moreover, as a consequence of the 1/√n proportionality fac-
tor in the CLT, the precision increase of a sample’s estimate of the 
population is much slower than the rate of data collection. In Figure 4  
we illustrate this variability and convergence for three samples drawn 
from the distribution in Figure 2a, as their size is progressively 
increased from n = 1 to n = 100. Be mindful of both effects and their 
role in diminishing the impact of additional measurements: to double 
your precision, you must collect four times more data.

Next month we will continue with the theme of estimation and dis-
cuss how uncertainty can be bounded with confidence intervals and 
visualized with error bars.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2613).
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large. When constructing a sample, it is not always obvious whether 
it is free from bias. For example, surveys sample only individuals who 
agreed to participate and do not capture information about those who 
refused. These two groups may be meaningfully different.

Samples are our windows to the population, and their statistics are 
used to estimate those of the population. The sample mean and s.d. are 
denoted by  –X     and s. The distinction between sample and population 
variables is emphasized by the use of Roman letters for samples and 
Greek letters for population (s versus s).

Sample parameters such as  –X     have their own distribution, called 
the sampling distribution (Fig. 2c), which is constructed by consider-
ing all possible samples of a given size. Sample distribution param-
eters are marked with a subscript of the associated sample variable 
(for example, μX–   and sX–   are the mean and s.d. of the sample means 
of all samples). Just like the population, the sampling distribution is 
not directly measurable because we do not have access to all possible 
samples. However, it turns out to be an extremely useful concept in 
the process of estimating population statistics.

Notice that the distribution of sample means in Figure 2c looks 
quite different than the population in Figure 2a. In fact, it appears 
similar in shape to a normal distribution. Also notice that its spread, 
sX–  , is quite a bit smaller than that of the population, s .  Despite these 
differences, the population and sampling distributions are intimately 
related. This relationship is captured by one of the most important and 
fundamental statements in statistics, the central limit theorem (CLT).

The CLT tells us that the distribution of sample means (Fig. 2c) 
will become increasingly close to a normal distribution as the sample 
size increases, regardless of the shape of the population distribution 

(Fig. 2a) as long as the frequency of extreme values drops off quickly. 
The CLT also relates population and sample distribution parameters 
by μX–   = μ and sX–   = s/√n. The terms in the second relationship are 
often confused: sX–   is the spread of sample means, and s is the spread 
of the underlying population. As we increase n, sX–   will decrease (our 
samples will have more similar means) but s will not change (sam-
pling has no effect on the population). The measured spread of sample 
means is also known as the standard error of the mean (s.e.m., SE –X     ) 
and is used to estimate sX–  .

A demonstration of the CLT for different population distri-
butions (Fig. 3) qualitatively shows the increase in precision of 
our estimate of the population mean with increase in sample 

Population distribution
Normal Skewed Uniform Irregular

n = 3

n = 5

n = 10

n = 20

Sampling distribution of sample mean

Figure 3 | The distribution of sample means from most distributions will be 
approximately normally distributed. Shown are sampling distributions of 
sample means for 10,000 samples for indicated sample sizes drawn from four 
different distributions. Mean and s.d. are indicated as in Figure 1.
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closely approximate μ and s. The s.e.m. (s/√n) is an estimate of sX–  and 
measures how well the sample mean approximates the population mean.
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size. Notice that it is still possible for a sample mean to fall far 
from the population mean, especially for small n. For example, 
in ten iterations of drawing 10,000 samples of size n = 3 from the 
irregular distribution, the number of times the sample mean fell 
outside μ ± s (indicated by vertical dotted lines in Fig. 3) ranged 
from 7.6% to 8.6%. Thus, use caution when interpreting means 
of small samples.

Always keep in mind that your measurements are estimates, which 
you should not endow with “an aura of exactitude and finality”5. The 
omnipresence of variability will ensure that each sample will be dif-
ferent. Moreover, as a consequence of the 1/√n proportionality fac-
tor in the CLT, the precision increase of a sample’s estimate of the 
population is much slower than the rate of data collection. In Figure 4  
we illustrate this variability and convergence for three samples drawn 
from the distribution in Figure 2a, as their size is progressively 
increased from n = 1 to n = 100. Be mindful of both effects and their 
role in diminishing the impact of additional measurements: to double 
your precision, you must collect four times more data.

Next month we will continue with the theme of estimation and dis-
cuss how uncertainty can be bounded with confidence intervals and 
visualized with error bars.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2613).
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large. When constructing a sample, it is not always obvious whether 
it is free from bias. For example, surveys sample only individuals who 
agreed to participate and do not capture information about those who 
refused. These two groups may be meaningfully different.

Samples are our windows to the population, and their statistics are 
used to estimate those of the population. The sample mean and s.d. are 
denoted by  –X     and s. The distinction between sample and population 
variables is emphasized by the use of Roman letters for samples and 
Greek letters for population (s versus s).

Sample parameters such as  –X     have their own distribution, called 
the sampling distribution (Fig. 2c), which is constructed by consider-
ing all possible samples of a given size. Sample distribution param-
eters are marked with a subscript of the associated sample variable 
(for example, μX–   and sX–   are the mean and s.d. of the sample means 
of all samples). Just like the population, the sampling distribution is 
not directly measurable because we do not have access to all possible 
samples. However, it turns out to be an extremely useful concept in 
the process of estimating population statistics.

Notice that the distribution of sample means in Figure 2c looks 
quite different than the population in Figure 2a. In fact, it appears 
similar in shape to a normal distribution. Also notice that its spread, 
sX–  , is quite a bit smaller than that of the population, s .  Despite these 
differences, the population and sampling distributions are intimately 
related. This relationship is captured by one of the most important and 
fundamental statements in statistics, the central limit theorem (CLT).

The CLT tells us that the distribution of sample means (Fig. 2c) 
will become increasingly close to a normal distribution as the sample 
size increases, regardless of the shape of the population distribution 

(Fig. 2a) as long as the frequency of extreme values drops off quickly. 
The CLT also relates population and sample distribution parameters 
by μX–   = μ and sX–   = s/√n. The terms in the second relationship are 
often confused: sX–   is the spread of sample means, and s is the spread 
of the underlying population. As we increase n, sX–   will decrease (our 
samples will have more similar means) but s will not change (sam-
pling has no effect on the population). The measured spread of sample 
means is also known as the standard error of the mean (s.e.m., SE –X     ) 
and is used to estimate sX–  .

A demonstration of the CLT for different population distri-
butions (Fig. 3) qualitatively shows the increase in precision of 
our estimate of the population mean with increase in sample 
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Figure 3 | The distribution of sample means from most distributions will be 
approximately normally distributed. Shown are sampling distributions of 
sample means for 10,000 samples for indicated sample sizes drawn from four 
different distributions. Mean and s.d. are indicated as in Figure 1.
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closely approximate μ and s. The s.e.m. (s/√n) is an estimate of sX–  and 
measures how well the sample mean approximates the population mean.
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POINTS OF SIGNIFICANCE

Importance of being 
uncertain
Statistics does not tell us whether we are right. It tells 
us the chances of being wrong.

When an experiment is reproduced we almost never obtain exactly 
the same results. Instead, repeated measurements span a range of val-
ues because of biological variability and precision limits of measuring 
equipment. But if results are different each time, how do we determine 
whether a measurement is compatible with our hypothesis? In “the 
great tragedy of Science—the slaying of a beautiful hypothesis by an 
ugly fact”1, how is ‘ugliness’ measured?

Statistics helps us answer this question. It gives us a way to quanti-
tatively model the role of chance in our experiments and to represent 
data not as precise measurements but as estimates with error. It also 
tells us how error in input values propagates through calculations. 
The practical application of this theoretical framework is to associate 
uncertainty to the outcome of experiments and to assign confidence 
levels to statements that generalize beyond observations.

Although many fundamental concepts in statistics can be under-
stood intuitively, as natural pattern-seekers we must recognize the 
limits of our intuition when thinking about chance and probability. 
The Monty Hall problem is a classic example of how the wrong 
answer can appear far too quickly and too credibly before our eyes. 
A contestant is given a choice of three doors, only one leading to 
a prize. After selecting a door (e.g., door 1), the host opens one of 
the other two doors that does not lead to a prize (e.g., door 2) and 
gives the contestant the option to switch their pick of doors (e.g., 
door 3). The vexing question is whether it is in the contestant’s 
best interest to switch. The answer is yes, but you would be in good 
company if you thought otherwise. When a solution was published 
in Parade magazine, thousands of readers (many with PhDs) wrote 
in that the answer was wrong2. Comments varied from “You made 
a mistake, but look at the positive side. If all those PhDs were 
wrong, the country would be in some very serious trouble” to “I 
must admit I doubted you until my fifth grade math class proved 
you right”2.

The Points of Significance column will help you move beyond an 
intuitive understanding of fundamental statistics relevant to your 
work. Its aim will be to address the observation that “approximate-
ly half the articles published in medical journals that use statistical 
methods use them incorrectly”3. Our presentation will be practical 
and cogent, with focus on foundational concepts, practical tips and 
common misconceptions4. A spreadsheet will often accompany each 
column to demonstrate the calculations (Supplementary Table 1). 
We will not exhaust you with mathematics.

Statistics can be broadly divided into two categories: descriptive and 
inferential. The first summarizes the main features of a data set with 
measures such as the mean and standard deviation (s.d.). The second 
generalizes from observed data to the world at large. Underpinning 
both are the concepts of sampling and estimation, which address the 
process of collecting data and quantifying the uncertainty in these 
generalizations.

To discuss sampling, we need to introduce the concept of a popula-
tion, which is the set of entities about which we make inferences. The 
frequency histogram of all possible values of an experimental variable 
is called the population distribution (Fig. 1a). We are typically inter-
ested in inferring the mean (μ) and the s.d. (s) of a population, two 
measures that characterize its location and spread (Fig. 1b). The mean 
is calculated as the arithmetic average of values and can be unduly 
influenced by extreme values. The median is a more robust measure 

of location and more suitable for distributions that are skewed or oth-
erwise irregularly shaped. The s.d. is calculated based on the square 
of the distance of each value from the mean. It often appears as the 
variance (s2) because its properties are mathematically easier to for-
mulate. The s.d. is not an intuitive measure, and rules of thumb help us 
in its interpretation. For example, for a normal distribution, 39%, 68%, 
95% and 99.7% of values fall within ± 0.5s, ± 1s, ± 2s and ± 3s. These 
cutoffs do not apply to populations that are not approximately normal, 
whose spread is easier to interpret using the interquartile range.

Fiscal and practical constraints limit our access to the popula-
tion: we cannot directly measure its mean (μ) and s.d. (s). The best 
we can do is estimate them using our collected data through the 
process of sampling (Fig. 2). Even if the population is limited to 
a narrow range of values, such as between 0 and 30 (Fig. 2a), the 

random nature of sampling will impart uncertainty to our estimate 
of its shape. Samples are sets of data drawn from the population  
(Fig. 2b), characterized by the number of data points n, usually 
denoted by X and indexed by a numerical subscript (X1). Larger 
samples approximate the population better.

To maintain validity, the sample must be representative of the popu-
lation. One way of achieving this is with a simple random sample, 
where all values in the population have an equal chance of being 
selected at each stage of the sampling process. Representative does 
not mean that the sample is a miniature replica of the population. In 
general, a sample will not resemble the population unless n is very 
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FINDING DIFFERENTIALLY ABUNDANT PROTEINS
False positive rate

Disease group

lo
g
 (

fe
a
tu

re
 a

b
u
n
d
a
n
c
e
)

6

8

10

12

14

controls NSTEMI stable STEMI unstable

expected t

Distribution of the 
score if H0 is true

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.

�

⇥

�

FDR = E
�

V
max(R,1)

⇥
. (1)

FWER = P [V > 0] . (2)

FPR = E
�

V
m0

⇥
. (3)

observed t =
Ĝ1 � Ĝ0⌅

Estimate of variation
(4)

�ave ⇤ (1� ⇥)ave · q 1
1 + (1� q) · m0/m1

, (5)

1

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.

�

⇥

�

FDR = E
�

V
max(R,1)

⇥
. (1)

FWER = P [V > 0] . (2)

FPR = E
�

V
m0

⇥
. (3)

observed t =
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Ĝ1 � Ĝ0 ⇥= 0 (2)

FDR = E
�

V
max(R,1)

⇥
. (3)

FWER = P [V > 0] . (4)

FPR = E
�

V
m0

⇥
. (5)

1

p = p-value



WITH SMALL SAMPLE SIZE, P-VALUES ARE UNSTABLE

• Repeatedly sampling data leads to different results
• The problem worsens when testing many proteins
• Solutions:

• Larger sample size
• Adjustment for multiple testing
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The fickle P value generates irreproducible results
Lewis G Halsey, Douglas Curran-Everett, Sarah L Vowler & Gordon B Drummond

The reliability and reproducibility of science are under scrutiny. However, a major cause of this lack of 
repeatability is not being considered: the wide sample-to-sample variability in the P value. We explain 
why P is fickle to discourage the ill-informed practice of interpreting analyses based predominantly on 
this statistic.

Reproducible research findings are a cor-
nerstone of the scientific method, providing 
essential validation. There has been recent 
recognition, however, that the results of 
published research can be difficult to repli-
cate1–7, an awareness epitomized by a series 
in Nature entitled “Challenges in irrepro-
ducible research” and by the Reproducibility 
Initiative, a project intended to identify 
and reward reproducible research (http://
val idat ion.scienceexchange.com/#/
reproducibilityinitiative). In a recent 
meeting at the American Association for 
the Advancement of Science headquar-
ters  involving many of the major journals 
reporting biomedical science research, a 
common set of principles and guidelines 
was agreed upon for promoting transpar-
ency and reproducibility8. These discus-
sions and initiatives all focused on a num-
ber of issues, including aspects of statistical 
reporting9, levels of statistical power (i.e., 
sufficient statistical capacity to find an 
effect; a ‘statistically significant’ finding)10 
and inclusion-exclusion criteria. Yet a fun-
damental problem inherent in standard 
statistical methods, one that is pervasively 
linked to the lack of reproducibility in 
research, remains to be considered: the 

wide sample-to-sample variability in the P 
value. This omission reflects a general lack 
of awareness about this crucial issue, and 
we address this matter here.

Focusing on the P value during statistical 
analysis is an entrenched culture11–13. The 
P value is often used without the realization 
that in most cases the statistical power of 
a study is too low for P to assist the inter-
pretation of the data (Box 1). Among the 
many and varied reasons for a fearful and 
hidebound approach to statistical practice, 
a lack of understanding is prominent14. A 
better understanding of why P is so unhelp-
ful should encourage scientists to reduce 
their reliance on this misleading concept.

Readers may know of the long-stand-
ing philosophical debate about the value 
and validity of null-hypothesis test-
ing15–17. Although the P value formalizes  

null-hypothesis testing, this article will not 
revisit these issues. Rather, we concentrate 
on how P values themselves are misunder-
stood.

Although statistical power is a central 
element in reliability18, it is often consid-
ered only when a test fails to demonstrate 
a real effect (such as a difference between 
groups): a ‘false negative’ result (see Box 2 
for a glossary of statistical terms used in 
this article). Many scientists who are not 
statisticians do not realize that the power of 
a test is equally relevant when considering 
statistically significant results, that is, when 
the null hypothesis appears to be unten-
able. This is because the statistical power of 
the test dramatically affects our capacity to 
interpret the P value and thus the test result. 
It may surprise many scientists to discover 
that interpreting a study result from its P 
value alone is spurious in all but the most 
highly powered designs. The reason for 
this is that unless statistical power is very 
high, the P value exhibits wide sample-to-
sample variability and thus does not reliably 
indicate the strength of evidence against the 
null hypothesis (Box 1).

We give a step-by-step, illustrated expla-
nation of how statistical power affects the 
reliability of the P value obtained from an 
experiment, with reference to previous 
Points of Significance articles published 
in Nature Methods, to help convey these 
issues. We suggest that, for this reason, 
the P value’s preeminence16 is unjustified 
and arguments about null-hypothesis tests 
become virtually irrelevant. Researchers 
would do better to discard the P value and 
use alternative statistical measures for data 
interpretation.

Population A Population B

1

0 0.5

Figure 1 | Simulated data distributions of two 
populations. The difference between the mean 
values is 0.5, which is the true (population) 
effect size. The standard deviation (the spread of 
values) of each population is 1.
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The misunderstanding about P
Ronald Fisher developed significance 
testing to make judgments about hypoth-
eses19, arguing that the lower the P value, 
the greater the reason to doubt the null 
hypothesis20. He suggested using the 
P value as a continuous variable to aid 
judgment. Today, scientific articles are 
typically peppered with P values, and often 
treat P as a dichotomous variable, slavishly 
focusing on a threshold value of 0.05. Such 
focus is unfounded because, for instance, 
P = 0.06 should be considered essential-
ly the same as P = 0.04; P values should 
not be given an aura of exactitude21,22. 
However, using P as a graded measure of 
evidence against the null hypothesis, as 
Fisher proposed, highlights the even more 
fundamental misunderstanding about P. 
If statistical power is limited, regardless 
of whether the P value returned from a 
statistical test is low or high, a repeat of 
the same experiment will likely result in a 
substantially different P value17 and thus 
suggest a very different level of evidence 
against the null hypothesis. Therefore, 
the P value gives little information about 
the probable result of a replication of the 
experiment; it has low test-retest reliabil-
ity. Put simply, the P value is usually a poor 
test of the null hypothesis. Most research-
ers recognize that a small sample is less 
likely to satisfactorily reflect the popula-
tion that they wish to study, as has been 
described in the Points of Significance 
series21, but they often do not realize that 
this effect will influence P values. There 
is variability in the P value23, but this is 
rarely mentioned in statistics textbooks or 
in statistics courses.

Indeed, most scientists employ the 
P value as if it were an absolute index of the 

truth. A low P value is automatically taken 
as substantial evidence that the data sup-
port a real phenomenon. In turn, research-
ers then assume that a repeat experiment 
would probably also return a low P value 
and support the original finding’s validity. 
Thus, many studies reporting a low P value 
are never challenged or replicated. These 
single studies stand alone and are taken to 
be true. In fact, another similar study with 
new, different, random observations from 
the populations would result in different 
samples and thus could well return a P 
value that is substantially different, possi-
bly providing much less apparent evidence 
for the reported finding.

Why statistical power is rarely 
sufficient for us to trust P
P values are only as reliable as the sample 
from which they have been calculated. 
A small sample taken from a population 
is unlikely to reliably reflect the features 
of that population21. As the number of 
observations taken from the population 
increases (i.e., sample size increases), the 

sample gives a better representation of the 
population from which it is drawn because 
it is less subject to the vagaries of chance. 
In the same way, values derived from these 
samples also become more reliable, and 
this includes the P value. Unfortunately, 
even when statistical power is close to 
90%, a P value cannot be considered to be 
stable; the P value would vary markedly 
each time if a study were replicated. In 
this sense, P is unreliable. As an example, 
if a study obtains P = 0.03, there is a 90% 
chance that a replicate study would return 
a P value somewhere between the wide 
range of 0–0.6 (90% prediction intervals), 
whereas the chances of P < 0.05 is just 56% 
(ref. 24). In other words, the spread of pos-
sible P values from replicate experiments 
may be considerable and will usually range 
widely across the typical threshold for sig-
nificance of 0.05. This may surprise many 
who believe that a test with 80% power is 
robust; however, this view comes from the 
accepted risk of a false negative.

To illustrate the variability of P values 
and why this happens, we will compare 
observations drawn from each of two 
normally distributed populations of data, 
A and B (Fig. 1). We know that a differ-
ence of 0.5 exists between the population 
means (the true effect size), but this dif-
ference may be concealed by the scatter of 
values within the population. We compare 
these populations by taking two random 
samples, one from A and the other from 
B. If we had to conserve resources, which 
could be necessary in practical situations, 
we might limit our two samples to ten 
observations each. In practice, we would 
conduct only one experiment, but let us 
consider the situation of having conduct-
ed four such simulated experiments (Fig. 
2). For each experiment, we use standard 

Figure 2 | Small samples show substantial variation. We drew samples of ten values at random from 
each of the populations A and B from Figure 1 to give four simulated comparisons. Horizontal lines 
denote the mean. We give the estimated effect size (the difference in the means) and the P value when 
the sample pairs are compared.

BOX 1  POWER ANALYSIS AND REPEATABILITY
A reasonable definition of the P value is that it measures the strength of evidence 
against the null hypothesis. However, unless statistical power is very high (>90%), 
the P value does not do this reliably. Power analysis combined with an either-or 
interpretation of the P value (simply either ‘statistically significant’ or ‘statistically 
nonsignificant’) allows us to estimate how often, if we were to conduct many replicate 
tests, a ‘statistically significant result’ will be found (assuming no type II errors)18. For 
instance, if the null hypothesis is false and a study has a power of 80%, then out of 
100 replicates, about 80 of them will be deemed statistically significant. In this sense, 
statistical power quantifies the repeatability of the P value, but only in terms of the 
either-or interpretation. Furthermore, in the real world, the power of a study is not 
known; at best it can be estimated. Finally, this interpretation of P is flawed because 
the strength of evidence against the null hypothesis is a continuous function of the 
magnitude of P (ref. 41). 

Simulation 1

1.46 (P = 0.005)
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MULTIPLE TESTING
Control False Positive Rate for two proteins 

t for protein 1

α/2 α/2

H0: ‘status quo’, no change in abundance,
Ha: change in abundance,

# of features with # of features with Total
no detected di�erence detected di�erence

# true non-di�. features U V m0

# true di�. features T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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Ĝ1 � Ĝ0 ⇥= 0 (2)

FDR = E
�

V
max(R,1)

⇥
. (3)

FWER = P [V > 0] . (4)

FPR = E
�

V
m0

⇥
. (5)

1

# of features with # of features with Total
no detected di�erence detected di�erence

# true non-di�. features U V m0

# true di�. features T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.

�

⇥

�

Ĝ1 � Ĝ0 = 0 (1)
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Ĝ1 � Ĝ0⇧
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ALTERNATIVE TO TESTING: CONFIDENCE INTERVALS
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THIS MONTH

POINTS OF SIGNIFICANCE

Error bars
The meaning of error bars is often misinterpreted, 
as is the statistical significance of their overlap.

Last month in Points of Significance, we showed how samples are 
used to estimate population statistics. We emphasized that, because 
of chance, our estimates had an uncertainty. This month we focus on 
how uncertainty is represented in scientific publications and reveal 
several ways in which it is frequently misinterpreted.

The uncertainty in estimates is customarily represented using 
error bars. Although most researchers have seen and used error 
bars, misconceptions persist about how error bars relate to statisti-
cal significance. When asked to estimate the required separation 
between two points with error bars for a difference at significance  
P = 0.05, only 22% of respondents were within a factor of 2 (ref. 1). 
In light of the fact that error bars are meant to help us assess the 
significance of the difference between two values, this observation 
is disheartening and worrisome.

Here we illustrate error bar differences with examples based on a 
simplified situation in which the values are means of independent 
(unrelated) samples of the same size and drawn from normal popula-
tions with the same spread. We calculate the significance of the differ-
ence in the sample means using the two-sample t-test and report it as 
the familiar P value. Although reporting the exact P value is preferred, 
conventionally, significance is often assessed at a P = 0.05 threshold. 
We will discuss P values and the t-test in more detail in a subsequent 
column.

The importance of distinguishing the error bar type is illustrat-
ed in Figure 1, in which the three common types of error bars— 
standard deviation (s.d.), standard error of the mean (s.e.m.) and con-
fidence interval (CI)—show the spread in values of two samples of size 
n = 10 together with the P value of the difference in sample means. In  
Figure 1a, we simulated the samples so that each error bar type has the 
same length, chosen to make them exactly abut. Although these three 
data pairs and their error bars are visually identical, each represents a 
different data scenario with a different P value. In Figure 1b, we fixed 
the P value to P = 0.05 and show the length of each type of bar for this 
level of significance. In this latter scenario, each of the three pairs of 
points represents the same pair of samples, but the bars have differ-
ent lengths because they indicate different statistical properties of the 
same data. And because each bar is a different length, you are likely 
to interpret each one quite differently. In general, a gap between bars 

does not ensure significance, nor does overlap rule it out—it depends 
on the type of bar. Chances are you were surprised to learn this unin-
tuitive result.

The first step in avoiding misinterpretation is to be clear about 
which measure of uncertainty is being represented by the error bar. 
In 2012, error bars appeared in Nature Methods in about two-thirds 
of the figure panels in which they could be expected (scatter and bar 
plots). The type of error bars was nearly evenly split between s.d. and 
s.e.m. bars (45% versus 49%, respectively). In 5% of cases the error 
bar type was not specified in the legend. Only one figure2 used bars 
based on the 95% CI. CIs are a more intuitive measure of uncertainty 
and are popular in the medical literature.

Error bars based on s.d. inform us about the spread of the popula-
tion and are therefore useful as predictors of the range of new sam-
ples. They can also be used to draw attention to very large or small 
population spreads. Because s.d. bars only indirectly support visual 
assessment of differences in values, if you use them, be ready to help 
your reader understand that the s.d. bars reflect the variation of the 
data and not the error in your measurement. What should a read-
er conclude from the very large and overlapping s.d. error bars for  
P = 0.05 in Figure 1b? That although the means differ, and this can 
be detected with a sufficiently large sample size, there is considerable 
overlap in the data from the two populations.

Unlike s.d. bars, error bars based on the s.e.m. reflect the uncer-
tainty in the mean and its dependency on the sample size, n (s.e.m. 
= s.d./√n). Intuitively, s.e.m. bars shrink as we perform more mea-
surements. Unfortunately, the commonly held view that “if the 
s.e.m. bars do not overlap, the difference between the values is sta-
tistically significant” is incorrect. For example, when n = 10 and 
s.e.m. bars just touch, P = 0.17 (Fig. 1a). Conversely, to reach P = 
0.05, s.e.m. bars for these data need to be about 0.86 arm lengths 
apart (Fig. 1b). We cannot overstate the importance of recognizing 
the difference between s.d. and s.e.m.

The third type of error bar you are likely to encounter is that based 
on the CI. This is an interval estimate that indicates the reliability of a 
measurement3. When scaled to a specific confidence level (CI%)—the 
95% CI being common—the bar captures the population mean CI% 
of the time (Fig. 2a). The size of the s.e.m. is compared to the 95% CI 
in Figure 2b. The two are related by the t-statistic, and in large samples 
the s.e.m. bar can be interpreted as a CI with a confidence level of 
67%. The size of the CI depends on n; two useful approximations for 
the CI are 95% CI ≈ 4 × s.e.m (n = 3) and 95% CI ≈ 2 × s.e.m. (n > 15).  
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Figure 1 | Error bar width and interpretation of spacing depends on the error 
bar type. (a,b) Example graphs are based on sample means of 0 and 1  
(n = 10). (a) When bars are scaled to the same size and abut, P values span 
a wide range. When s.e.m. bars touch, P is large (P = 0.17). (b) Bar size and 
relative position vary greatly at the conventional P value significance cutoff 
of 0.05, at which bars may overlap or have a gap.

Figure 2 | The size and position of confidence intervals depend on the 
sample. On average, CI% of intervals are expected to span the mean—about 
19 in 20 times for 95% CI. (a) Means and 95% CIs of 20 samples (n = 10) 
drawn from a normal population with mean m and s.d. σ. By chance, two of 
the intervals (red) do not capture the mean. (b) Relationship between s.e.m. 
and 95% CI error bars with increasing n.
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Not all error bars are made the same

Krzywinski and Altman, Points of Significance Collection, Nature Methods
Simulated example

A 95% CI means that if we repeatedly 
collect data and draw confidence 

intervals, then 95% of them will contain 
the true mean Width of the intervals depends 

on the sample size

CI are wider than bars indicating 
standard error of the mean!



ERROR BARS PROVIDE DIFFERENT INSIGHT

Krzywinski and Altman, Points of Significance Collection, Nature Methods
Simulated example
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Figure 2 | The size and position of confidence intervals depend on the 
sample. On average, CI% of intervals are expected to span the mean—about 
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A common misconception about CIs is an expectation that a CI 
captures the mean of a second sample drawn from the same popu-
lation with a CI% chance. Because CI position and size vary with 
each sample, this chance is actually lower.

This variety in bars can be overwhelming, and visually relating 
their relative position to a measure of significance is challenging. 
We provide a reference of error bar spacing for common P values in  
Figure 3. Notice that P = 0.05 is not reached until s.e.m. bars are sepa-
rated by about 1 s.e.m, whereas 95% CI bars are more generous and 
can overlap by as much as 50% and still indicate a significant differ-
ence. If 95% CI bars just touch, the result is highly significant (P = 
0.005). All the figures can be reproduced using the spreadsheet avail-
able in Supplementary Table 1, with which you can explore the rela-
tionship between error bar size, gap and P value.

Be wary of error bars for small sample sizes—they are not robust, 
as illustrated by the sharp decrease in size of CI bars in that regime 
(Fig. 2b). In these cases (e.g., n = 3), it is better to show individual 
data values. Furthermore, when dealing with samples that are related 
(e.g., paired, such as before and after treatment), other types of error 
bars are needed, which we will discuss in a future column.

It would seem, therefore, that none of the error bar types is intui-
tive. An alternative is to select a value of CI% for which the bars 
touch at a desired P value (e.g., 83% CI bars touch at P = 0.05). 
Unfortunately, owing to the weight of existing convention, all three 
types of bars will continue to be used. With our tips, we hope you’ll 
be more confident in interpreting them. 
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2659).
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Figure 3 | Size and position of s.e.m. and 95% CI error bars for common  
P values. Examples are based on sample means of 0 and 1 (n = 10).


