Plan for the day

1

• Morning

- 9:00am-10:00am Olga: Statistical experimental design
- ♦ 10:00am-10:30am Brendan: Data processing with Skyline
- 10:30am-11:00am *Coffee*
- 11:00am-12:00pm Brendan: Data processing with Skyline

• Afternoon

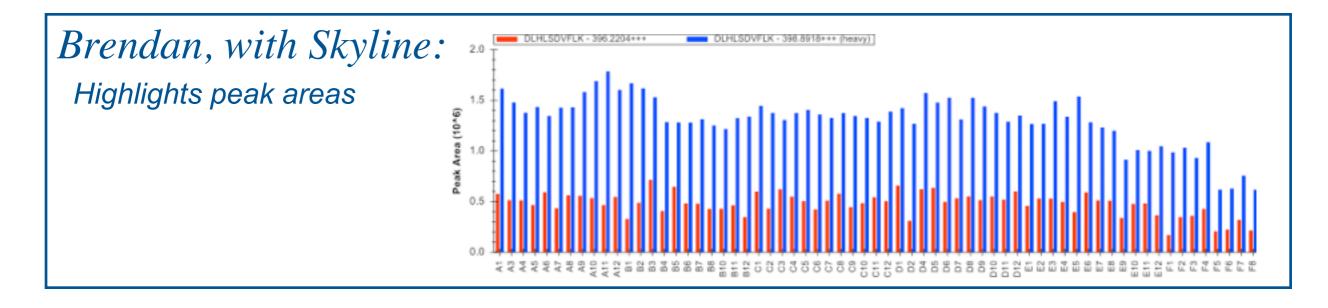
- 1:00pm-2:00pm Olga: Statistical significance analysis
- 2:00pm-2:30pm Meena: Statistical analysis case studies
- 2:30pm-3:00pm *Coffee*
- 3:00pm-4:00pm Meena: Statistical analysis case studies

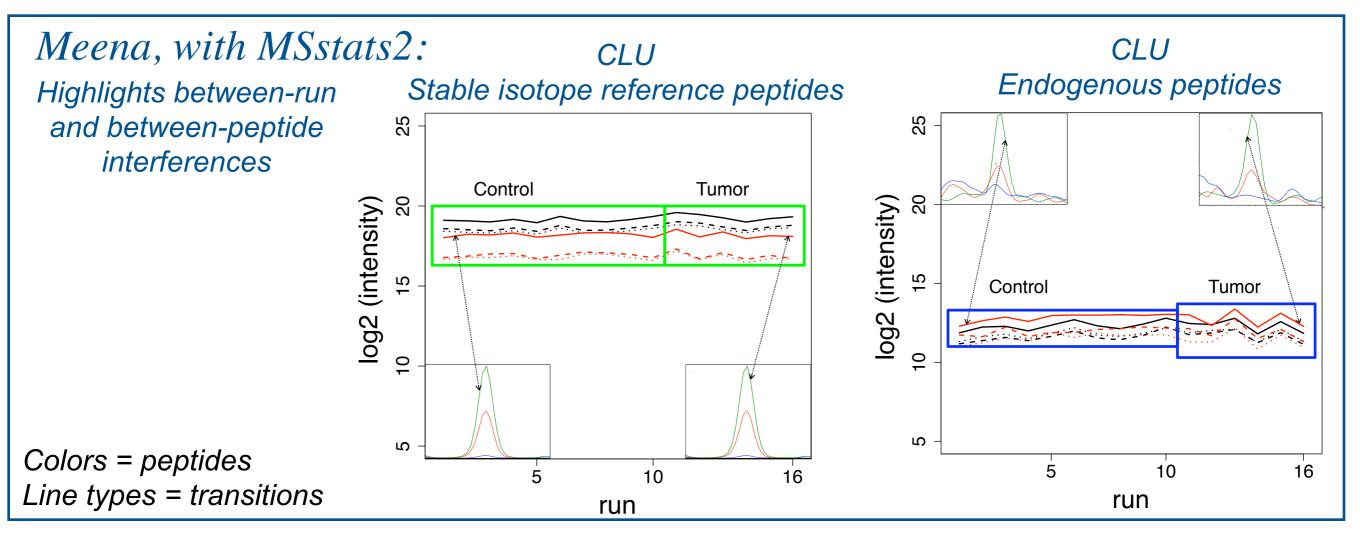
Steps of statistical significance analysis

- Define the analysis protocol
 - Type of analysis and comparisons of interest
 - Scope of conclusions
 - Model type
- Normalization and quality control
- Model-based analysis
 - Specify the model
 - Perform-based comparisons
 - Control for multiple testing
- Use the experiment to gain insight into future studies
 - Compare strategies of future resource allocation
 - Calculate sample size of a future similar experiment

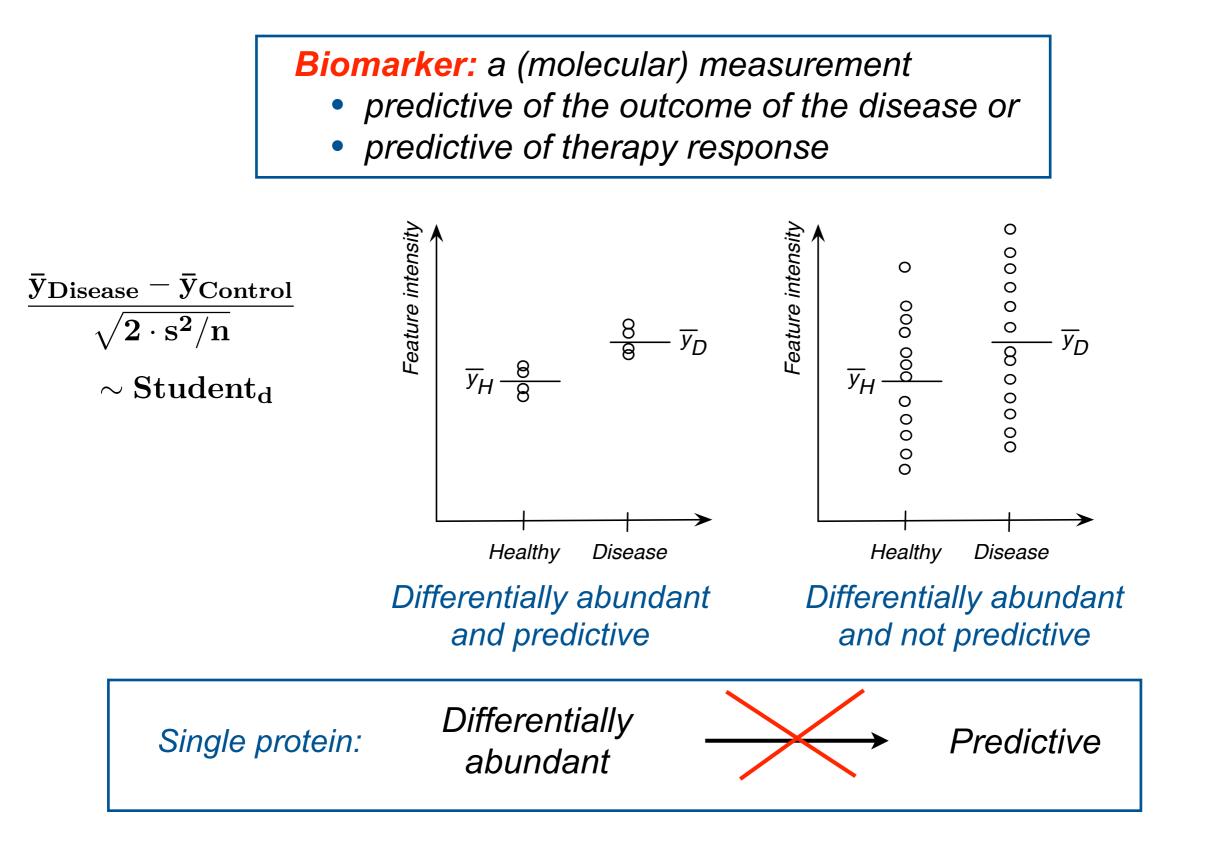
Example: ovarian cancer dataset

- 5 cancer patients and 10 controls
- 3 peptides/protein; 3 transitions/peptide





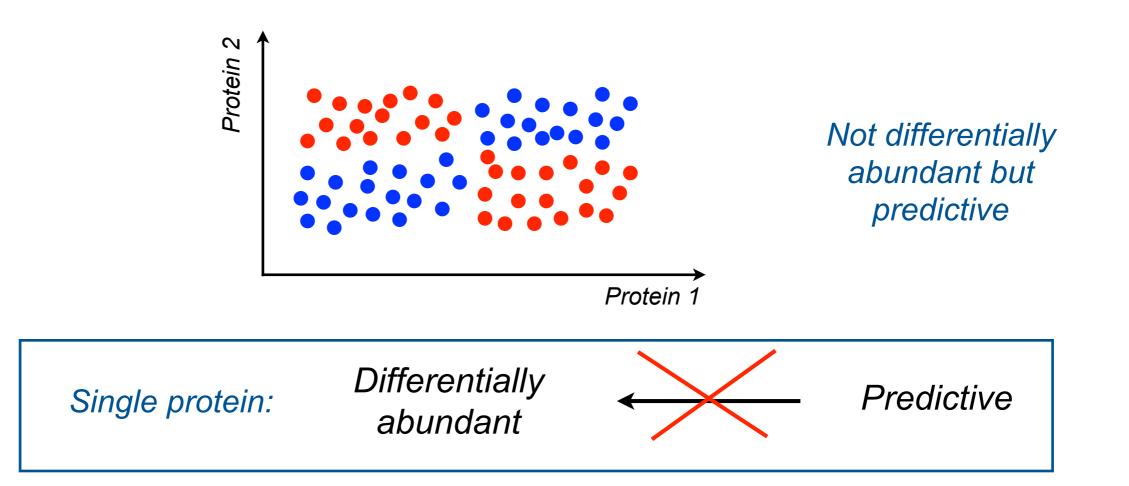
Differentially abundant proteins are not always biomarkers



Biomarkers are not always differentially abundant proteins

Biomarker: a (molecular) measurement

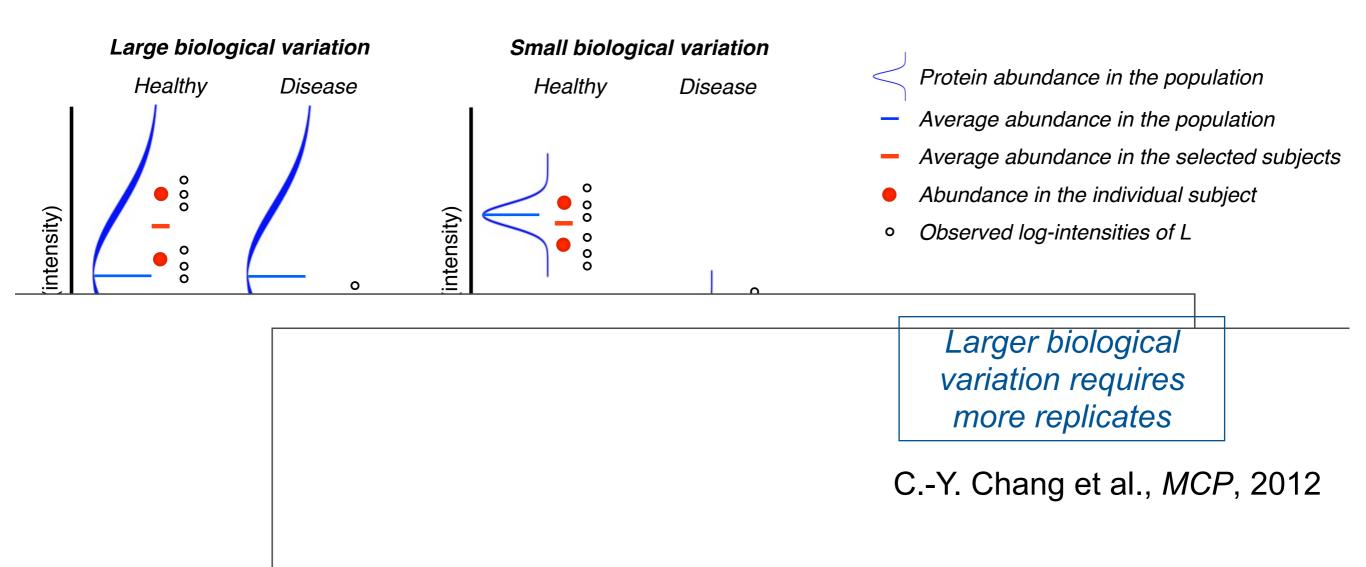
- predictive of the outcome of the disease or
- predictive of therapy response



Since the ovarian cancer study is a screening experiment, testing is appropriate

Different scope of conclusions ask different biological questions and leads to different results

6



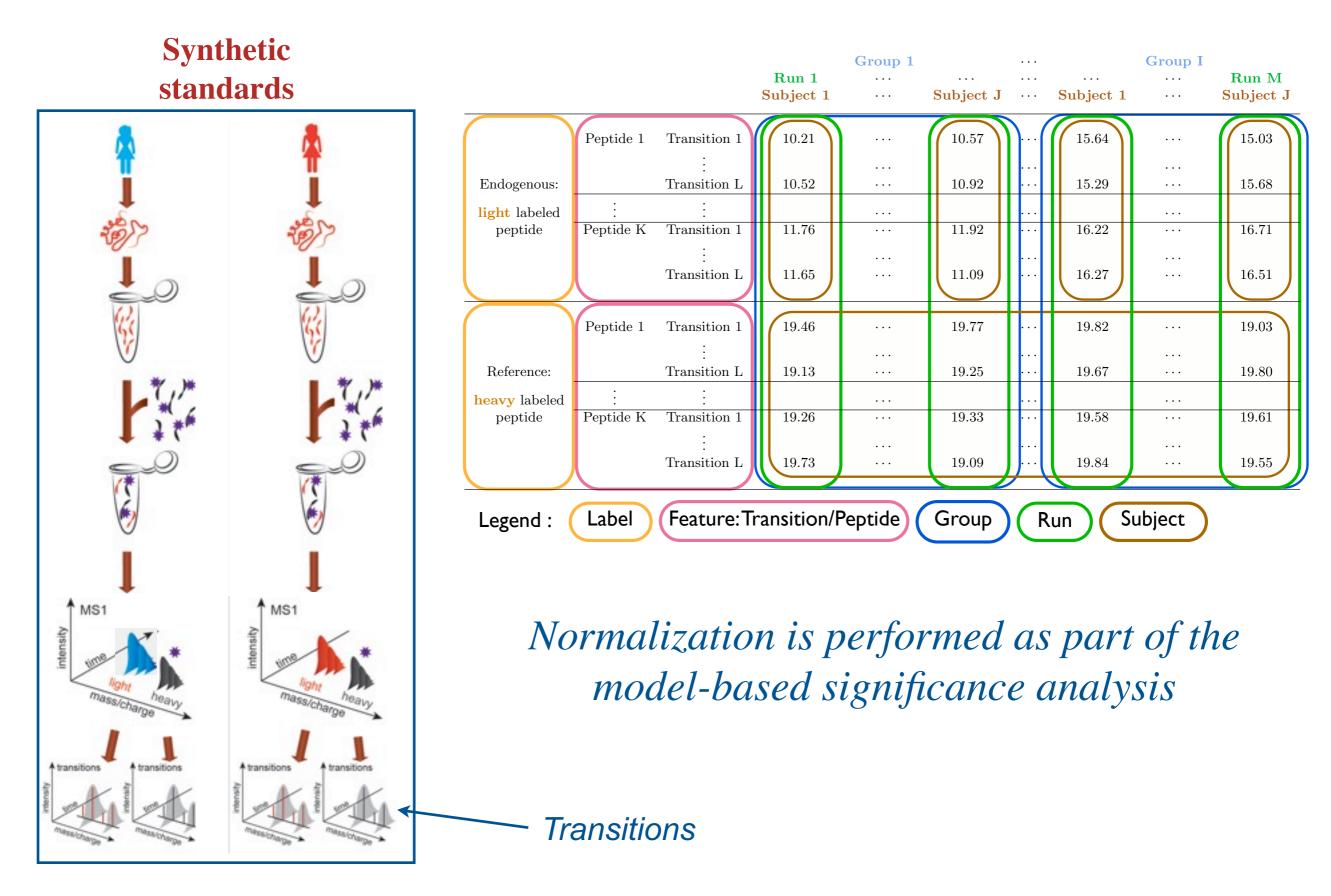
Since the ovarian cancer study is a screening experiment, testing with a restricted scope of conclusions is appropriate

These considerations, and the extent of anticipated interferences in peak intensities, defines the model type

Steps of statistical significance analysis

- Define the analysis protocol
 - Type of analysis and comparisons of interest
 - Scope of conclusions
 - Model type
- Normalization and quality control
- Model-based analysis
 - Specify the model
 - Perform-based comparisons
 - Control for multiple testing
- Use the experiment to gain insight into future studies
 - Compare strategies of future resource allocation
 - Calculate sample size of a future similar experiment

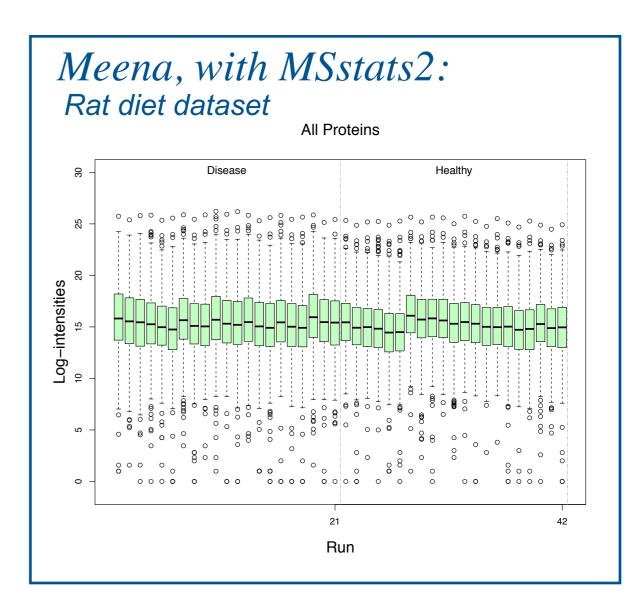
In label-based SRM, reference intensities serve as internal normalization factors



In label-free SRM, pre-analysis normalization is more important (and more difficult!)

• Constant normalization

- Normalize with respect to *all features in the run*, or to *controls*
 - Controls: less biological variation, more technical variation
- Assumption: all runs have the same median log(intensity)
 - Subtract median[log(intensity)] (of the controls) in the run
 - Add the median of all medians
- Quantile normalization
 - Assumption: all runs have the same distribution of intensities
 - Not just the medians!
 - Too aggressive when the number of features is small (in hundreds)
 - Global normalization has worked best for us so far



Steps of statistical significance analysis

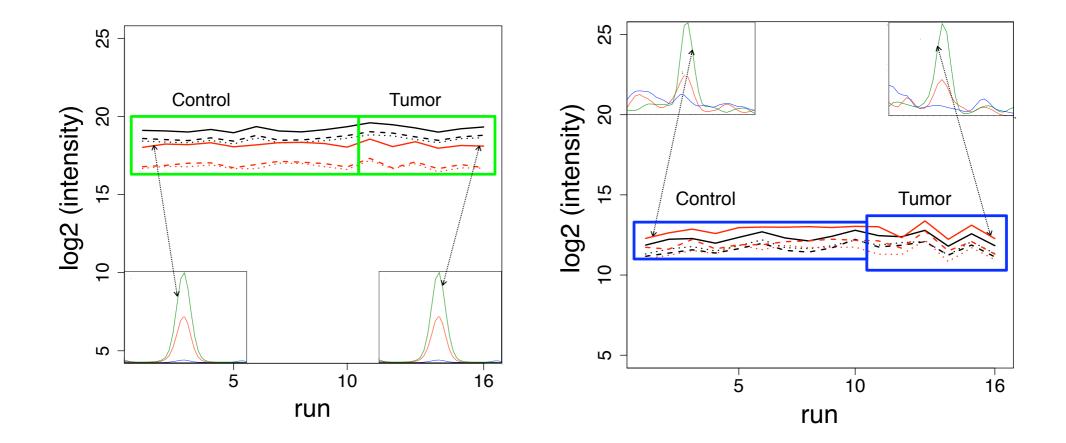
- Define the analysis protocol
 - Type of analysis and comparisons of interest
 - Scope of conclusions
 - Model type
- Normalization and quality control
- Model-based analysis
 - Specify the model
 - Perform-based comparisons
 - Control for multiple testing
- Use the experiment to gain insight into future studies
 - Compare strategies of future resource allocation
 - Calculate sample size of a future similar experiment

Linear mixed effects model describes the systematic and the random sources of variation

11

Example: ovarian cancer dataset

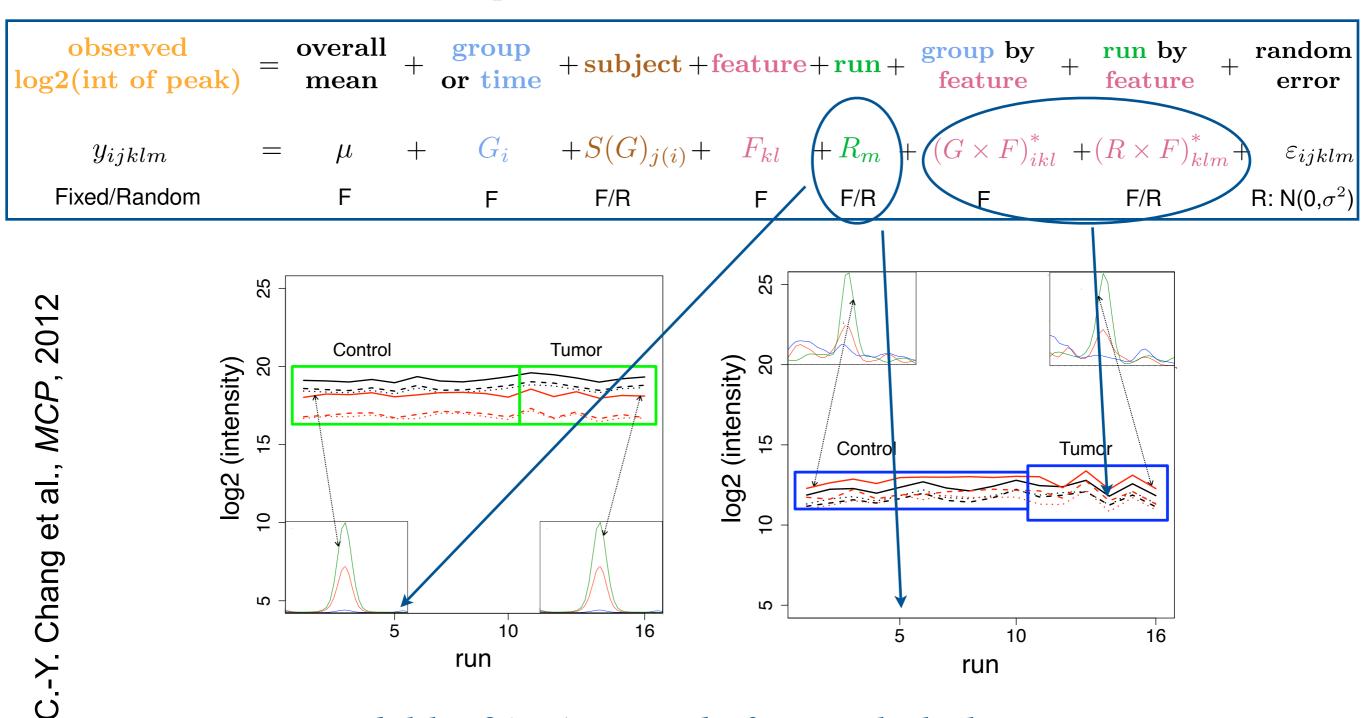
${f observed} \ \log 2({f int of peak})$		overall mean		group or time	+ subject +	-feature	+ run +	group by feature	$+ \begin{array}{c} \mathbf{run \ by} \\ \mathbf{feature} \end{array} +$	random error
y_{ijklm}	=	μ	+	G_i	$+S(G)_{j(i)}$ -	$\vdash F_{kl}$	$+R_m$ +	$\left(G\times F\right)_{ikl}^{*}$	$+(R \times F)^*_{klm}$ +	+ ε_{ijklm}
Fixed/Random		F		F	F/R	F	F/R	F	F/R	R: N(0, σ^2)



Model log2(int) instead of ratios light/heavy 'Run' pairs the endogenous and reference intensities

Linear mixed effects model describes the systematic ¹² and the random sources of variation ¹²

Example: ovarian cancer dataset



Model log2(int) instead of ratios light/heavy 'Run' pairs endogenous and reference transitions from a same run

Linear mixed effects model describes the systematic and the random sources of variation

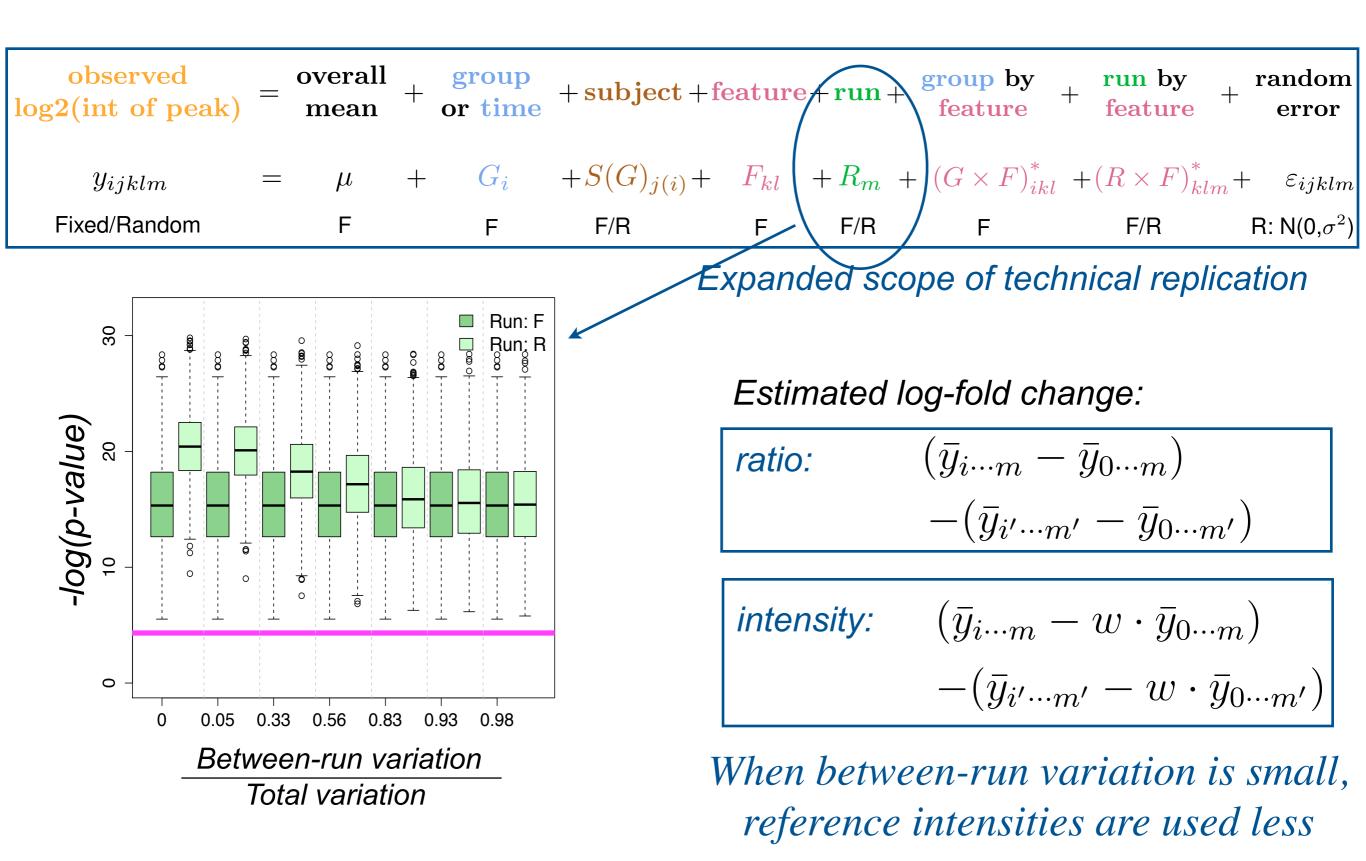
13

Example: ovarian cancer dataset

observed log2(int of peak)		overall mean	+	group or time	$+ \mathbf{subject} + \mathbf{f}$	featur	e+run+	group by feature	+ run by feature	$+ \begin{array}{c} {\bf random} \\ {\bf error} \end{array}$
y_{ijklm}	=	μ	+	G_i	$+S(G)_{j(i)}+$	F_{kl}	$+R_m$ +	$-\left(G\times F\right)_{ikl}^{*}$	$+(R \times F)^*_{klr}$	$_{n}$ + ε_{ijklm}
Fixed/Random		F		F	F/R	F	F/R	F	F/R	R: N(0, σ^2)

- Can express the scope of conclusions
 - F: restricted, e.g. $\sum_{j=0}^{J} S(G)_{j(i)} = 0$ R: expanded, e.g. $S(G)_{j(i)} \stackrel{iid}{\sim} N(0, \sigma_S^2)$
- In some cases, same conclusions as with the ratios
 - When no missing values, restricted scope of run, expanded scope of subject
- Advantage: can be modified to more generality
 - Missing values, flexible scopes, random interferences, unequal variance
- Can express other designs
 - Fine course: add GxS interaction. Label-free: no R and RxF terms

Advantage: appropriately modifying the assumptions improves the accuracy

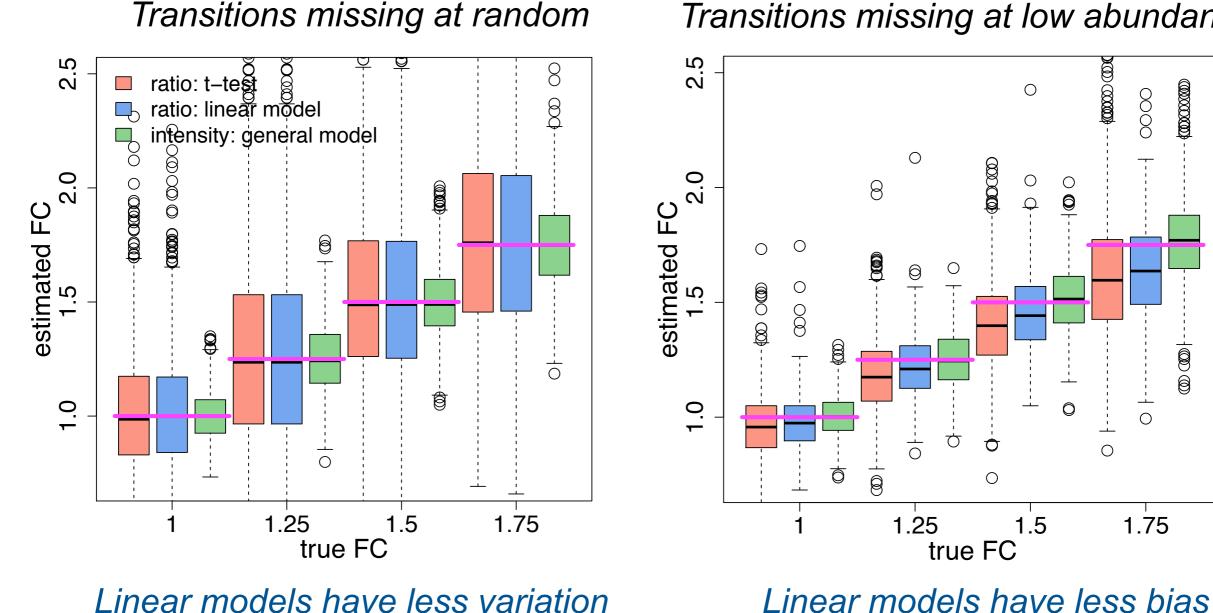


14

Advantage: better handling of missing data

Do not discard peaks with a missing counterpart

- ratio: t-test
 - ratio: linear model
 - intensity: general model

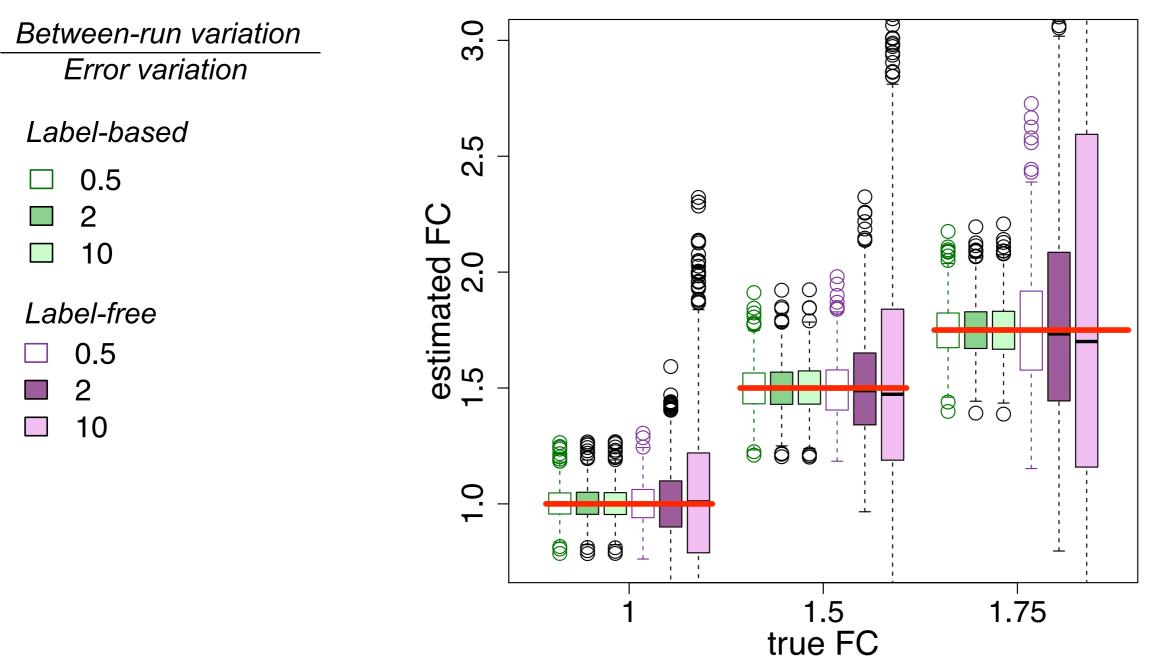


Linear models have less variation

Transitions missing at low abundance

C.-Y. Chang et al., *MCP*, 2012

Advantage: can compare label-free and label-based designs by simulation



experimental design: labeling

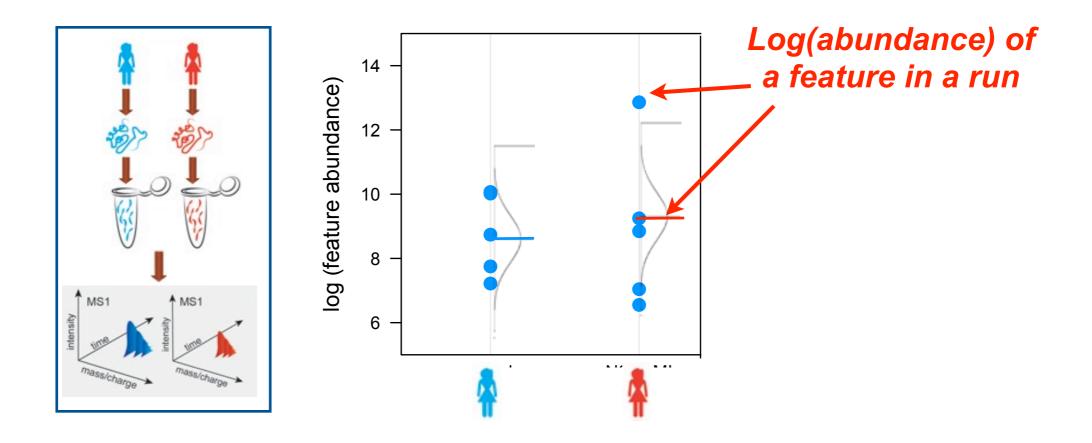
Caveat: this assumes same technical variation in both workflows. In practice, label-free experiments can have larger variation. C.-Y. Chang et al., MCP, 2012

Steps of statistical significance analysis

- Define the analysis protocol
 - Type of analysis and comparisons of interest
 - Scope of conclusions
 - Model type
- Normalization and quality control
- Model-based analysis
 - Specify the model
 - Perform-based comparisons
 - Control for multiple testing
- Use the experiment to gain insight into future studies
 - Compare strategies of future resource allocation
 - Calculate sample size of a future similar experiment

Finding differentially abundant proteins

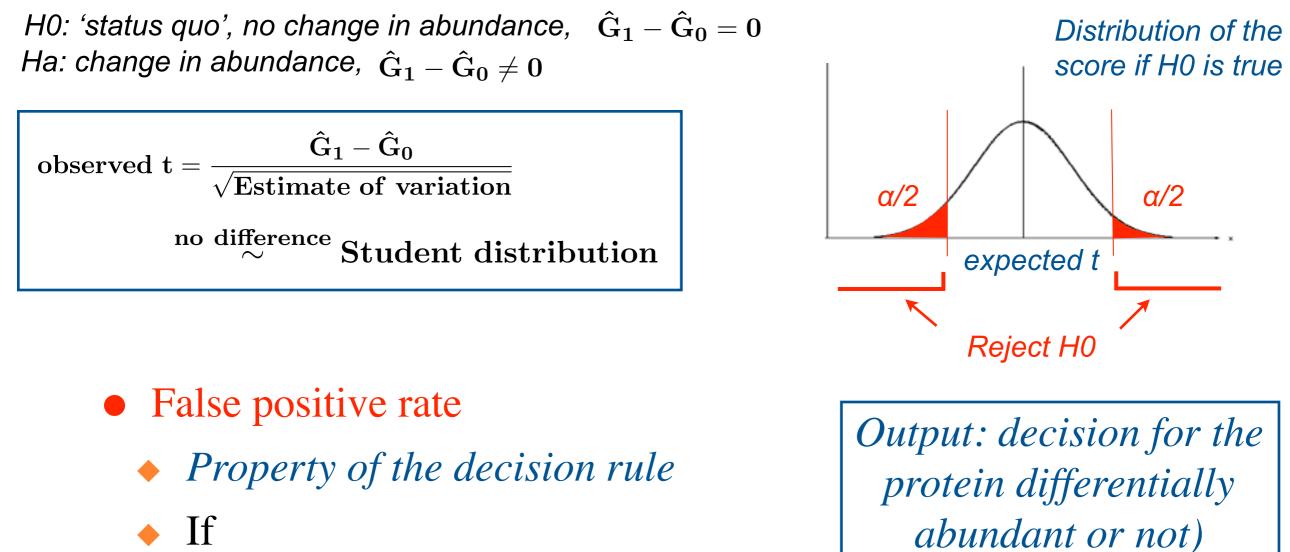
Simple example: one protein, one feature per protein, label-free



- Two inter-dependent approaches
 - Decision-based
 - For each protein, decide whether it is differentially abundant
 - Ranking-based
 - Rank the proteins for evidence of differential abundance
- Report a measure of confidence; account for # of proteins

False positive rate *a*

Simple example: one protein, one feature per protein, label-free

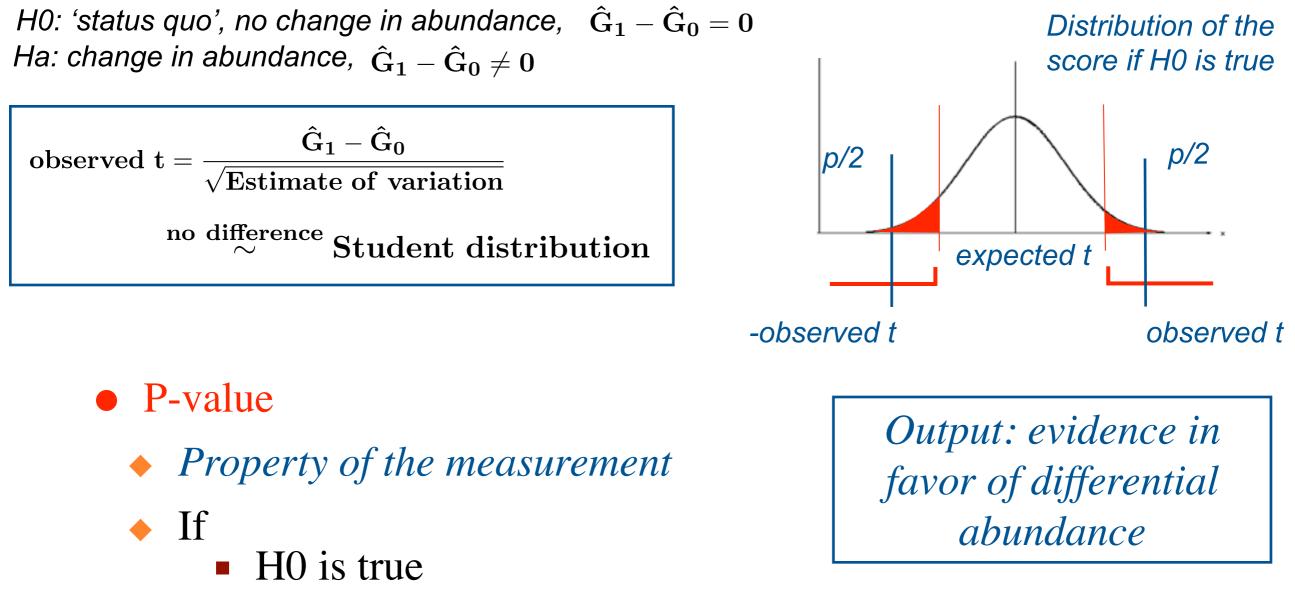


- H0 is true
- we infinitely measure the same protein
- use the same score cutoff
- FPR is the average proportion of false rejections = α

19

P-value

Simple example: one protein, one feature per protein, label-free

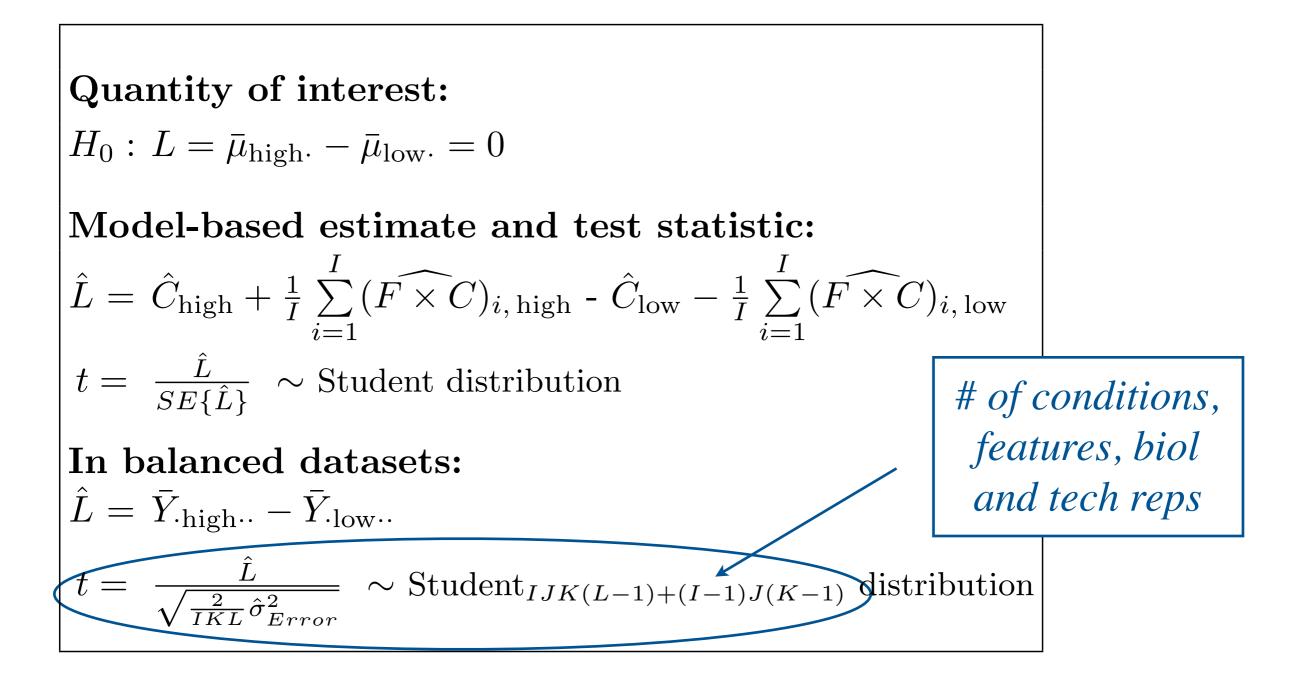


- we infinitely measure the same protein
- P-value is the average proportion of scores more extreme than *t*P-value is the lowest *α* that rejects H0

More complex models lead to a similar procedure

21

Example: label-free rat diet dataset

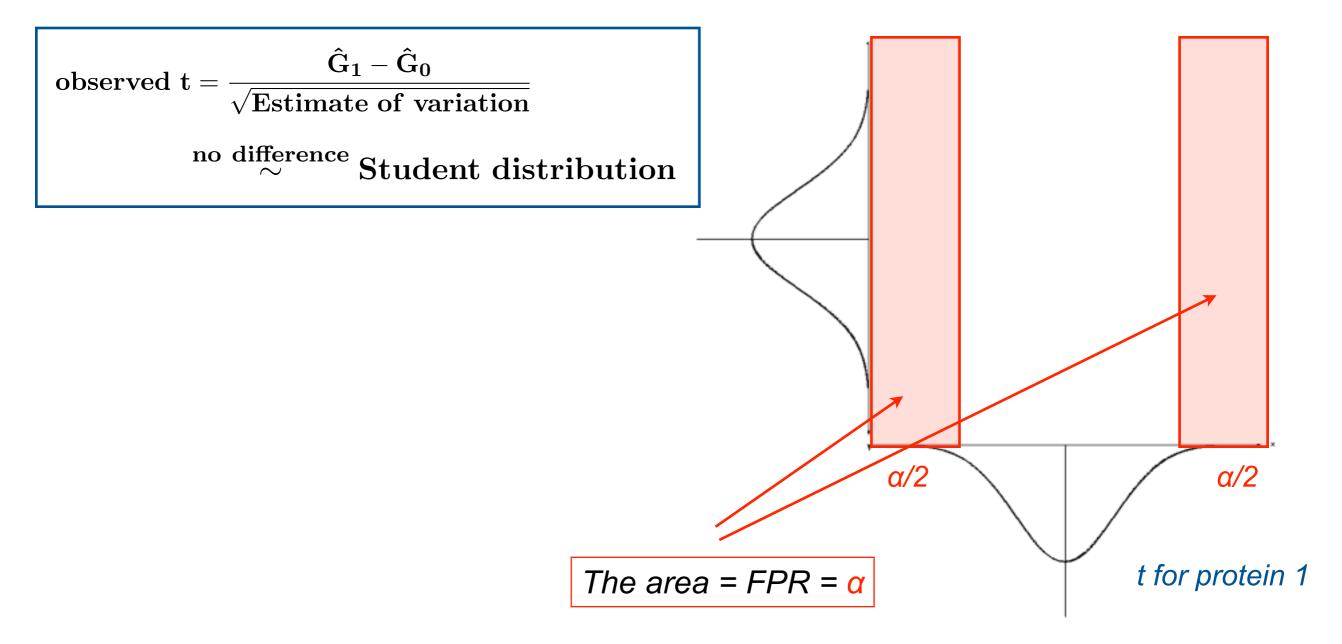


A similar signal-to-noise ratio and a similar student distribution MSstats2 calculates this automatically

Need to account for testing multiple proteins *What happens if we simultaneously test 2 proteins?*

For each protein:

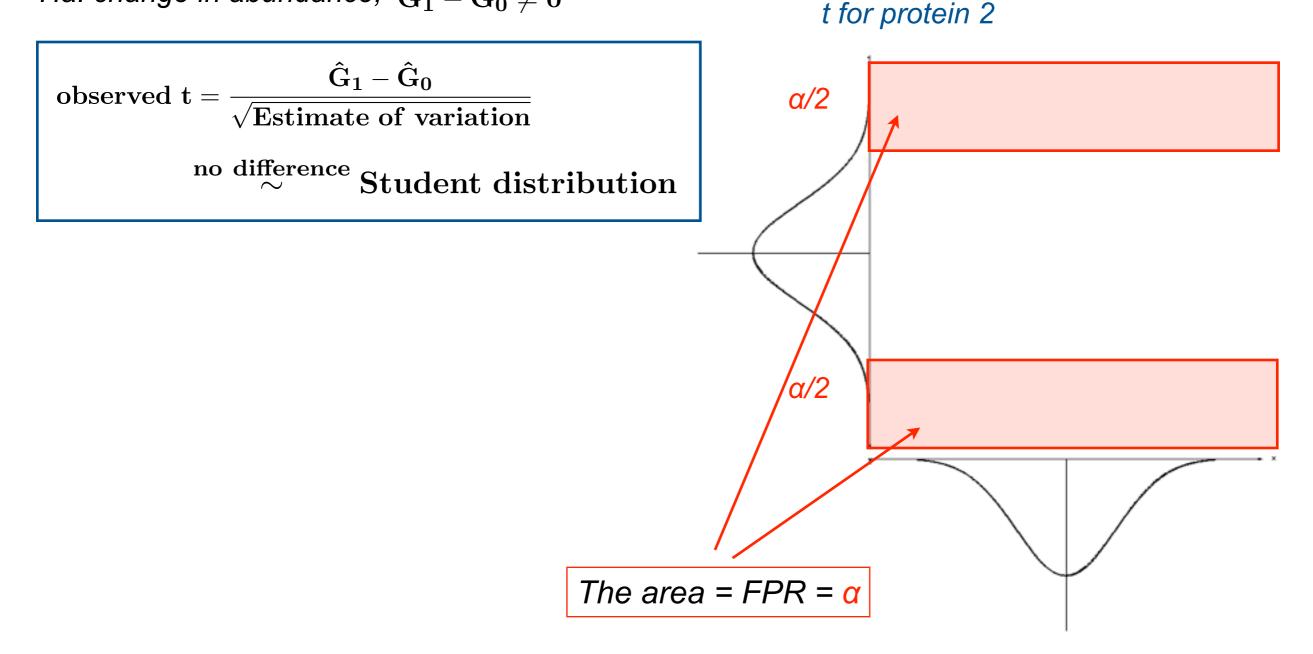
H0: 'status quo', no change in abundance, $\hat{G}_1 - \hat{G}_0 = 0$ Ha: change in abundance, $\hat{G}_1 - \hat{G}_0 \neq 0$



Need to account for testing multiple proteins *What happens if we simultaneously test 2 proteins?*

For each protein:

H0: 'status quo', no change in abundance, $\hat{G}_1 - \hat{G}_0 = 0$ Ha: change in abundance, $\hat{G}_1 - \hat{G}_0 \neq 0$



23

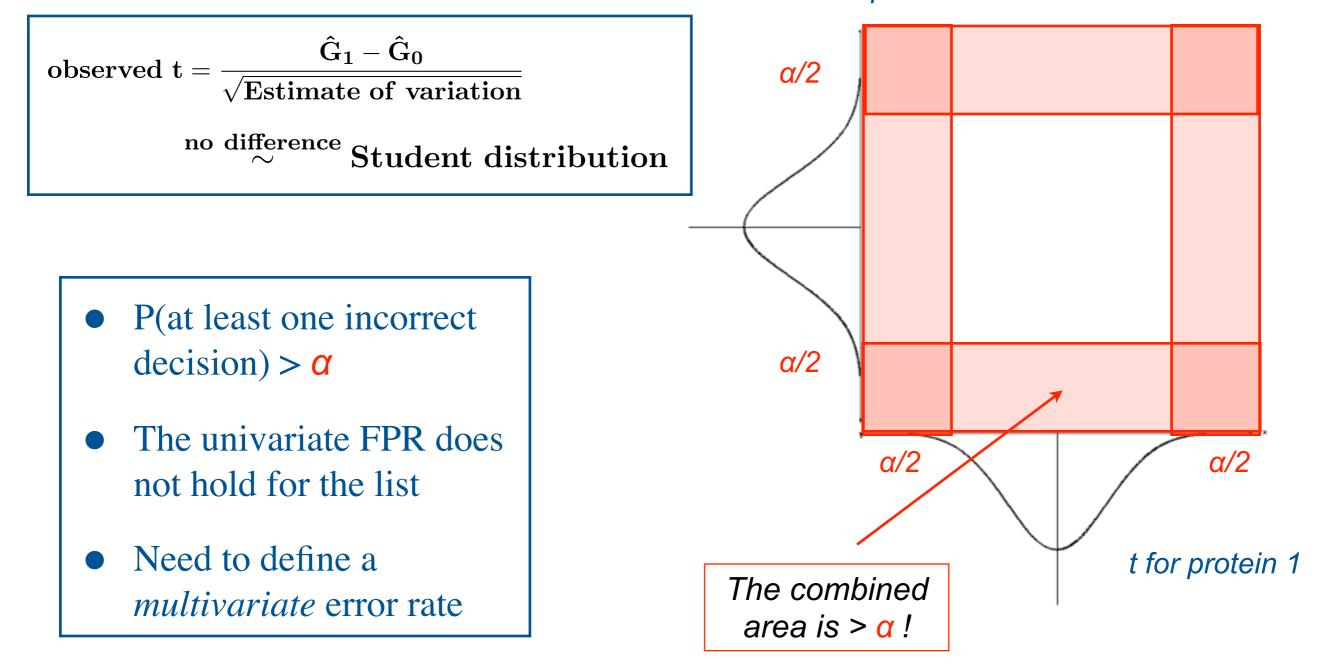
Need to account for testing multiple proteins *What happens if we simultaneously test 2 proteins?*

For each protein:

H0: 'status quo', no change in abundance, $\hat{G}_1 - \hat{G}_0 = 0$ Ha: change in abundance, $\hat{G}_1 - \hat{G}_0 \neq 0$

t for protein 2

24



Differentially abundant features: False Discovery Rate (FDR)

The outcome of testing H0 for m features

	# of proteins with	# of proteins with	Total
	no detected difference	detected difference	
# true non-diff. proteins	U	\mathbf{V}	m ₀
# true diff. proteins	Т	\mathbf{S}	$\mathbf{m_1} = \mathbf{m} - \mathbf{m_0}$
Total	m - R	R	m

- False discovery rate (FDR)
 - Property of the testing procedure
 - If
 we collect an infinite number of measurements on the same group of proteins
 - FDR is the average proportion of false discoveries in the list of proteins with detected difference

$$\mathbf{FDR} = \mathbf{E}\left[rac{\mathbf{V}}{\max(\mathbf{R}, \mathbf{1})}
ight]$$

Use p-values to control FDR

Vary the threshold while comparing decreasing p-values

• Change decision rule (property of the procedure)											
Order	Order least significant \Longrightarrow most significant										
p-value Compare to	$\begin{vmatrix} p_{(m)} \\ \frac{m}{m}q \end{vmatrix}$	$p_{(m-1)} \over rac{m-1}{m} q$	•••	$\frac{p_{(k+1)}}{\frac{k+1}{m}q}$	$\left \begin{array}{c} p_{(k)} \\ \frac{k}{m} q \end{array} \right $	$p_{(k-1)} \ rac{k-1}{m} q$	•••	$p_{(1)}$ $rac{1}{m}q$			
Is $p \le q$? Is significant?	No No	No No	•••	No No	Yes Yes	Yes	Yes	Yes			

• Adjust the p-value (property of the test)

$$\tilde{p}_j = \min_{k=j,\dots,m} \left\{ \min\left(\frac{m}{k} p_{(k)}, 1\right) \right\}$$

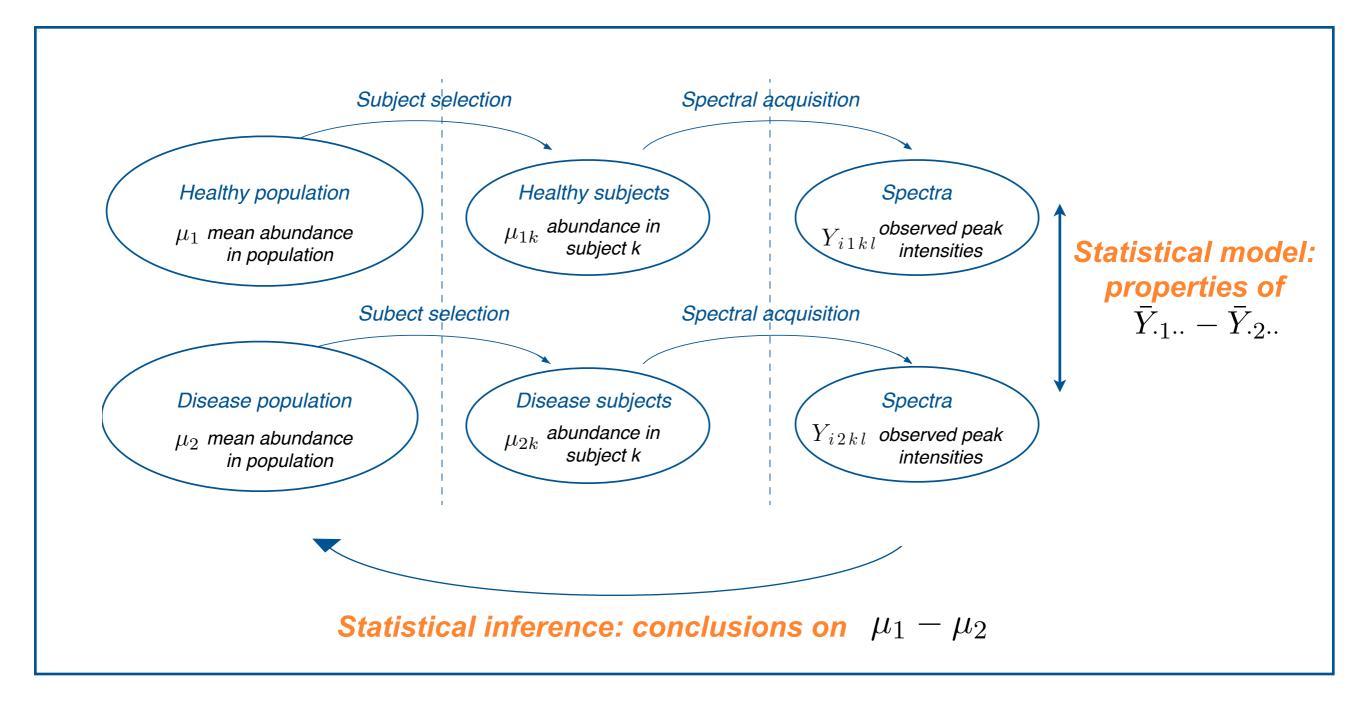
- adjusted p-value cut-off corresponds to the FDR
- adjusted p-value (obtained with an alternative procedure) is sometimes referred to as q-value

Benjamini and Hochberg, JRSS B, 57, p. 289, 1995

Steps of statistical significance analysis

- Define the analysis protocol
 - Type of analysis and comparisons of interest
 - Scope of conclusions
 - Model type
- Normalization and quality control
- Model-based analysis
 - Specify the model
 - Perform-based comparisons
 - Control for multiple testing
- Use the experiment to gain insight into future studies
 - Compare strategies of future resource allocation
 - Calculate sample size of a future similar experiment

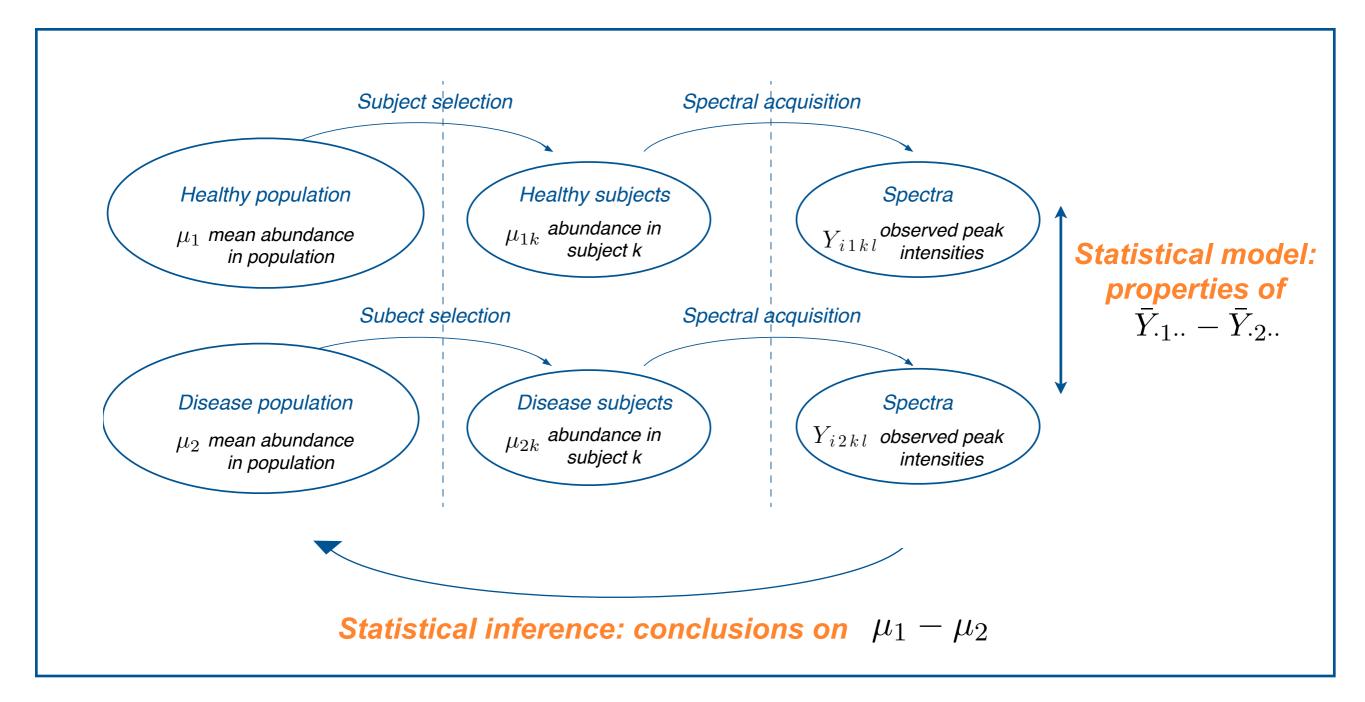
Recall: H is how a statistician would use the data to perform the comparisons



Potential dangers:

Bias: $\bar{Y}_{.1..} - \bar{Y}_{.2..}$ systematically different from $\mu_{1k} - \mu_{2k}$ **Inefficiency:** Large $Var(\bar{Y}_{.1..} - \bar{Y}_{.2..})$

Recall: Here is how a statistician would use the data 29 to perform the comparisons



Potential dangers:

Bias: $\bar{Y}_{.1..} - \bar{Y}_{.2..}$ systematically different from $\mu_{1k} - \mu_{2k}$ **Inefficiency:** Large $Var(\bar{Y}_{.1..} - \bar{Y}_{.2..})$ **Focus of resource** allocation

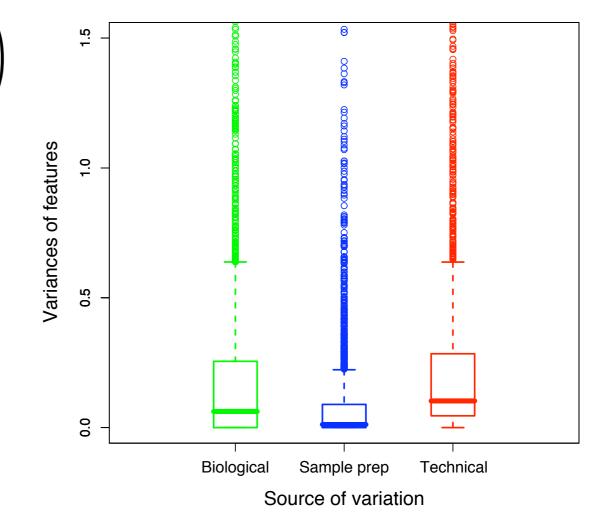
Linear mixed effects models are required to evaluate the importance of various replicate types

Observed feature intensity	=	Systematic mean signal of disease group	+	Random deviation due to individual	+	Random deviation due to sample preparation	+	Random deviation due to measurement error
Yijkl	=	Group mean _i	+	$\frac{\mathbf{Indiv}(\mathbf{Group})_{\mathbf{j}(\mathbf{i})}}{\sim \mathbf{N}\left(0, \sigma^{2}_{\mathbf{Indiv}}\right)}$	+	$\frac{\mathbf{Prep}(\mathbf{Indiv})_{\mathbf{k}(\mathbf{ij})}}{\sim \mathbf{N}\left(0, \sigma^{2}_{\mathbf{Prep}}\right)}$	+	$\frac{\mathbf{Error_{l(ijk)}}}{\sim \mathbf{N}\left(0, \sigma^{2}_{\mathbf{Error}}\right)}$

$$\begin{aligned} &\operatorname{Var}(\bar{\mathbf{y}}_{H} - \bar{\mathbf{y}}_{D}) = 2 \left(\frac{\sigma_{Indiv}^{2}}{I} + \frac{\sigma_{Prep}^{2}}{IJ} + \frac{\sigma_{Error}^{2}}{IJK} \right) \\ &\operatorname{I:} \# \text{ individuals per disease group} \\ &\operatorname{J:} \# \text{ sample preps} \\ &\operatorname{K:} \# \text{ replicate runs} \end{aligned}$$

A pilot experiment

- 2 healthy individuals, 2 with diabetes
- multiple sample preparations
- multiple LC-MS replicates



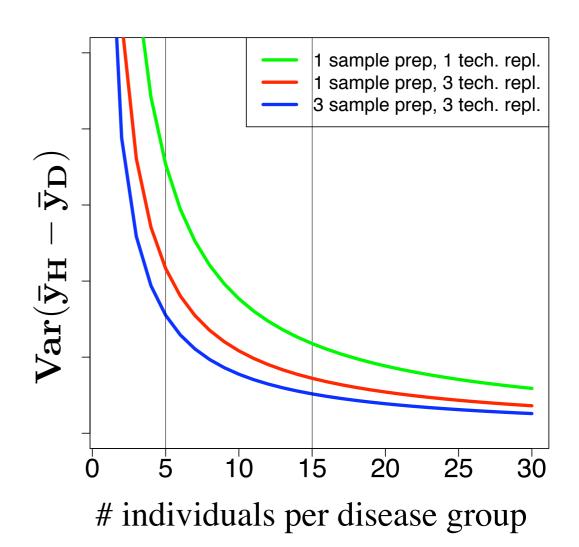
Linear mixed effects models are required to evaluate the importance of various replicate types

Observed feature intensity	=	Systematic mean signal of disease group	+	Random deviation due to individual	+	Random deviation due to sample preparation	+	Random deviation due to measurement error
Y ijkl	=	Group mean _i	+	$egin{aligned} \mathbf{Indiv}(\mathbf{Group})_{\mathbf{j}(\mathbf{i})}\ \sim \mathbf{N}\left(0,\sigma^{2}_{\mathbf{Indiv}} ight) \end{aligned}$	+	$\frac{\mathbf{Prep}(\mathbf{Indiv})_{\mathbf{k}(\mathbf{ij})}}{\sim \mathbf{N}\left(0, \sigma^{2}_{\mathbf{Prep}}\right)}$	+	$egin{aligned} \mathbf{Error}_{\mathbf{l}(\mathbf{ijk})}\ \sim \mathbf{N}\left(0,\sigma^{2}_{\mathbf{Error}} ight) \end{aligned}$

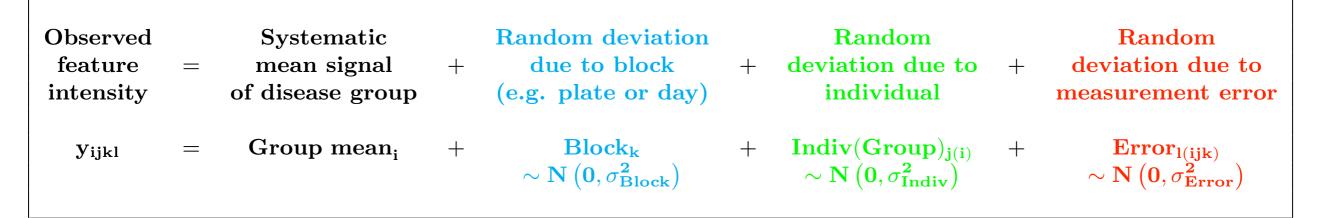
Var
$$(\bar{\mathbf{y}}_{\mathbf{H}} - \bar{\mathbf{y}}_{\mathbf{D}}) = 2 \left(\frac{\sigma_{\mathbf{Indiv}}^2}{\mathbf{I}} + \frac{\sigma_{\mathbf{Prep}}^2}{\mathbf{IJ}} + \frac{\sigma_{\mathbf{Error}}^2}{\mathbf{IJK}} \right)$$

I: # individuals per disease group
J: # sample preps
K: # replicate runs

Maximize the number of biological replicates



Linear mixed effects models are required to evaluate the value of blocking (e.g. plate or day)



A completely randomized design

I: # individuals per disease group

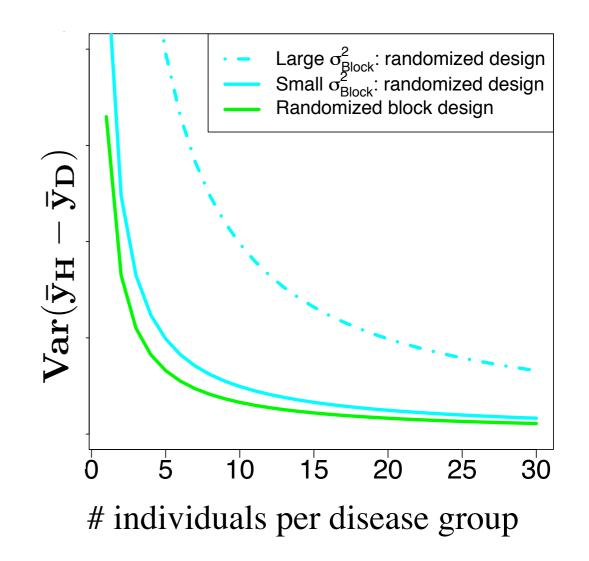
 $\mathbf{Var}(\mathbf{\bar{y}_{H}} - \mathbf{\bar{y}_{D}}) = \mathbf{2} \left(\frac{\sigma_{\mathbf{Block}}^{2} + \sigma_{\mathbf{Indiv}}^{2} + \sigma_{\mathbf{Error}}^{2}}{\mathbf{I}} \right)$

A block-randomized design

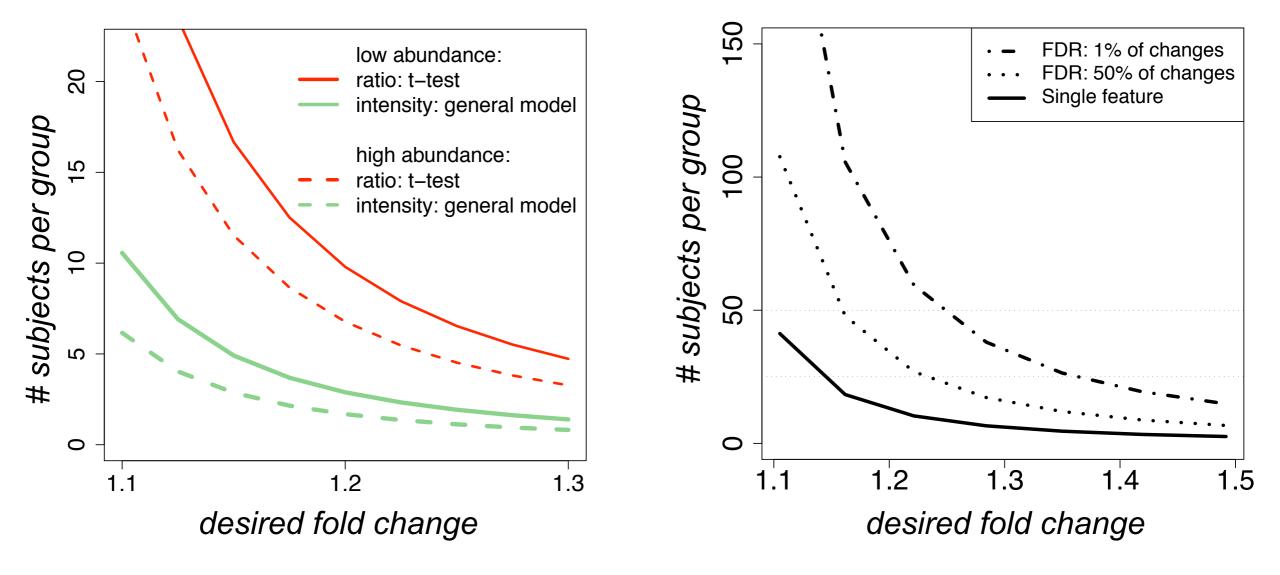
 $\operatorname{Var}(\overline{\mathbf{y}}_{\mathbf{H}} - \overline{\mathbf{y}}_{\mathbf{D}}) = 2\left(\frac{\sigma_{\mathbf{Indiv}}^2 + \sigma_{\mathbf{Error}}^2}{\mathbf{I}}\right)$

Conclusion: Block-randomize - if can not control a large source of variation

- if moderate sample size



Linear mixed effects models are required to calculate the sample size



- Need prior information to plan sample size
 - statistical model for data analysis
 - estimates of sources of variation
 - expected proportion of differentially abundant proteins

Oberg and Vitek, *JPR*, 2009

A lot must be known in advance to calculate the sample size

Need to know in advance:

q - the False Discovery Rate

 m_0/m_1 - anticipated ratio of unchanging features

- probability of a true positive discovery β

 Δ - anticipated fold change

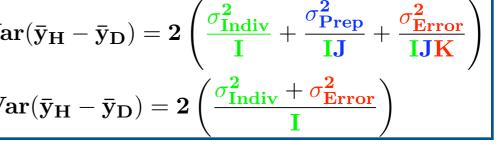
 σ_{Indiv}^2 and σ_{Error}^2 - anticipated variance

Then calculate:

$$\operatorname{Var}(\overline{\mathbf{y}}_{\mathbf{H}} - \overline{\mathbf{y}}_{\mathbf{D}}) \leq \left(\frac{\Delta}{\mathbf{z}_{1-\beta} + \mathbf{z}_{1-\alpha/2}}\right)^{2}$$

$$\begin{split} & \mathbf{Var}(\mathbf{\bar{y}_{H}} - \mathbf{\bar{y}_{D}}) = \mathbf{2} \left(\frac{\sigma_{\mathbf{Indiv}}^{2}}{\mathbf{I}} + \frac{\sigma_{\mathbf{Prep}}^{2}}{\mathbf{IJ}} + \frac{\sigma_{\mathbf{Error}}^{2}}{\mathbf{IJK}} \right) \\ & \mathbf{Var}(\mathbf{\bar{y}_{H}} - \mathbf{\bar{y}_{D}}) = \mathbf{2} \left(\frac{\sigma_{\mathbf{Indiv}}^{2} + \sigma_{\mathbf{Error}}^{2}}{\mathbf{I}} \right) \end{split}$$

where $\mathbf{z_{1-\beta}}$ and $\mathbf{z_{1-\alpha/2}}$ are Normal quantiles $\alpha_{\text{ave}} \leq (\mathbf{1} - \beta)_{\text{ave}} \cdot \mathbf{q} \frac{\mathbf{1}}{\mathbf{1} + (\mathbf{1} - \mathbf{q}) \cdot \mathbf{m}_0 / \mathbf{m}_1},$



Then solve for the number of replicates

Alternatively, fix sample size and solve for one other number

ົງ

Open-source R-based software for protein quantification www.stat.purdue.edu/~ovitek

Veavi Chang Purdue

Meena Choi Purdue

Tim Clough Purdue

- Recognizes experimental designs
 - time course/group comparison
- Data visualization and quality control
 - data plots, model-checking plots
- Model fitting
 - unequal variance, pooling interactions
- Model-based conclusions
 - group comparison & sample quantification
- Planning future experiments
 - number of replicates, peptides, transitions

Statistical protein quantification Shotgun & SRM Label-based & label-free

Since Dec 2011:

- 285 unique visitors
- over 50 unique downloads
- over 50 mailing list members

Concluding thoughts

- More sophisticated models lead to more accurate conclusions
 - It is worthwhile to invest time and effort
 - Software implementation facilitates the task
- More model flexibility means more analysis choices
 - Define the data analysis protocol before seeing the data
 - Do not change the protocol after seeing the data
- Utilize consistent computational tools to facilitate reporting, re-analysis and peer review
 - Skyline is great! Now with the statistical tools.
- Involve a statistician in all steps of planning and analysis!

References

• Skyline

• B. MacLean et al. *Bioinformatics*, 26, p.966, 2010.

- Statistical analysis tools
 - SRMstats:

C.-Y. Chang et al. Molecular & Cellular Proteomics, 2012.

• MSstats:

T. Clough et al. *BMC Bioinformatics*, 13 (Suppl. 16) 2012.
T. Clough et al., *Methods in Molecular Biology*, 728, 2011
T. Clough et al., *Journal of Proteome Research*, 8, p.5275, 2009

- General statistical methodology
 - L. Käll and O. Vitek. *PLoS Computational Biology*, 7, 2011
 - P. Radivojac and O. Vitek (Eds.) *BMC Bioinformatics*, 2012