e Morning

Plan for the day

9:00am-10:00am  Olga: Statistical experimental design

10:00am-10:30am Brendan: Data processing with Skyline
10:30am-11:00am Coffee
11:00am-12:00pm Brendan: Data processing with Skyline

e Afternoon
1:00pm-2:00;
2:00pm-2:30;
2:30pm-3:00;

Om
Om

bm

3:00pm-4:00

bm

Olga: Statistical significance analysis
Meena: Statistical analysis case studies
Coffee

Meena: Statistical analysis case studies



Steps of statistical significance analysis

Define the analysis protocol

Type of analysis and comparisons of interest
Scope of conclusions

Model type

e Normalization and quality control

® Model-based analysis
Specity the model
Perform-based comparisons

Control for multiple testing

® Use the experiment to gain insight into future studies
Compare strategies of future resource allocation

Calculate sample size of a future similar experiment



Example: ovarian ¢ 5 cancer patients and 10 controls
cancer dataset ¢ 3 peptides/protein; 3 transitions/peptide
Brendan, Wl't.h Sk:yll’ne * 2 [ LSOV - 58 2204+ =TRSOV UK - W38 5918+ ++ Faavy]
Highlights peak areas s
nuthuu.MJJlL .N“MNHHL I“““MMJNUJNJJJJ
Meena, with MSstats2: CLU CLU
Highlights between-run Stable isotope reference peptides Endogenous peptides
and between-peptide & - & - | A
interferences
— o Control Tumor — o s AL
Pl | R — = A ”
I ki - == SRl l FEat s 2
E 2 A = 2 Control Tumor
Colors = peptides o A . ) A " L e e

Line types = transitions run run




Differentially abundant proteins are not always biomarkers

Biomarker: a (molecular) measurement
* predictive of the outcome of the disease or
* predictive of therapy response

yDisease — }_’Control

V2-s2/n

~ Studenty

Feature intensity
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Differentially abundant

Feature intensity
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Biomarkers are not always differentially abundant proteins

Biomarker: a (molecular) measurement
* predictive of the outcome of the disease or
* predictive of therapy response

>

AN

S

O

IS ®000% 0 ,%6,4°%

T | %% 0°¢° %% %° Not differentially
0 80 oo :00 o '.'.o abundant but
:’.‘ ’.o. ¢ 0....0 e predictive

Protein 1)

. . Differentially oy
Single protein. obundant % redictive

Since the ovarian cancer study is a screening experiment,
testing is appropriate




Log?2 (intensity)

Different scope of conclusions ask different biological
questions and leads to different results

Large biological variation Small biological variation
Healthy Disease Healthy Disease < Protein abundance in the population
— Average abundance in the population
= Average abundance in the selected subjects
o § N ® o ® Abundance in the individual subject
- % : Z o Observed log-intensities of L
P o c lo)
o JO; o
° o £ o
o g fa\ ® o
. 87 - O . .
o 3 S 3 Laifgelr b/olog/_cal
© variation requires
more replicates
| | | |
<O IS <O <O C.-Y. Chang et al., MCP, 2012
GOQ’ 60@ 6OQ 6Oq
& 2 & &
) ) % )

Since the ovarian cancer study is a screening experiment,
testing with a restricted scope of conclusions is appropriate

These considerations, and the extent of anticipated interferences in
peak intensities, defines the model type



Steps of statistical significance analysis

® Define the analysis protocol
Type of analysis and comparisons of interest
Scope of conclusions

Model type

e Normalization and quality control

® Model-based analysis
Specity the model
Perform-based comparisons

Control for multiple testing

® Use the experiment to gain insight into future studies
Compare strategies of future resource allocation

Calculate sample size of a future similar experiment



In label-based SRM, reference intensities 8
serve as internal normalization factors

Synthetic Group 1 e Group I
Run 1 Run M

Standards Subject 1 . Subject J --- Subject 1 e Subject J

* Peptide 1 Transition 1
l Endogenous: Transition L 10.52 e 10.92 - 15.29 e 15.68
light labeled : e - e
@\ﬂ peptide Peptide K Transition 1 11.76 e 11.92 - 16.22 e 16.71
l Transition L 11.65 - 11.09 - 16.27 e 16.51
/)
'
(¢ Transition 1 || /719.46 » 1977 ||| 1982 - 19.03 )
"’ . .« . DY ...
Reference: Transition L 19.13 e 19.25 - 19.67 e 19.80
heavy labeled : : ce - e
peptide Peptide K Transition 1 19.26 . 19.33 - 19.58 ‘e 19.61
Transition L K973 19.09 19.84 19.55
\_ \ N~ \ — 4 9%

(1057 \ ) )+ [[ 1564 ) ( 15.03 )

Legend : | Label Geature Tran5|t|on/Pept|d9 CGroup) CRun) CSub]ect )

Normalization is performed as part of the
model-based significance analysis

' —— Transitions




In label-free SRM, pre-analysis normalization
is more important (and more difficult!)

e Constant normalization
Normalize with respect to all features in the run, or to controls
= Controls: less biological variation, more technical variation
Assumption: all runs have the same median log(intensity)

= Subtract median[log(intensity)] (of the controls) in the run

=  Add the median of all medians :
Meena, with MSstats2:

e Quantile normalization Rat ajet gataset =
Assumption: all runs have the same : Dcas
distribution of intensities o] Pevteeneo8ote asoot 0n L bo 00,00 oy o,

T178g08588888:5855% o 88gB88g8g,8
NSRRI IR
= Not just the medians! * f

= Too aggressive when the number of
features 1s small (1in hundreds)
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Steps of statistical significance analysis

® Define the analysis protocol
Type of analysis and comparisons of interest
Scope of conclusions

Model type

e Normalization and quality control

® Model-based analysis
Specity the model

Perform-based comparisons

Control for multiple testing

® Use the experiment to gain insight into future studies
Compare strategies of future resource allocation

Calculate sample size of a future similar experiment

10



Linear mixed effects model describes the systematic
and the random sources of variation

Example: ovarian cancer dataset

11 .
_ overa n gro.up + subject +feature+run 4+ group by run by random
mean or time feature feature error
Yiikim = u + G +9G)im+ Fu +Rm + (GxF)y +(RXF).+  Eijkim
Fixed/Random F F F/R F F/R F F/R R: N(0,0?)
9 - &
™
g =g Control Tumor =9
Q = e ) TR e =
E = 2 = 2 ;Control Tumor
C_U. CC\JD %17 ...... SN
= o o o o -
(@)
-
© o - ]\ /\ o
O 5 10 16 5 10 16
>_- run run
1
@)

Model log2(int) instead of ratios light/heavy
‘Run’ pairs the endogenous and reference intensities




Linear mixed effects model describes the systematic 12
and the random sources of variation

Example: ovarian cancer dataset

overall rou )
= + & . p + subject 4+ feature+run + eroup by run by random
mean or time feature feature error
Yijklm = v + G +S(G) (i Eijklm
Fixed/Random F F F/R R: N(0,0?)
'E‘\Ij _
AN
<
o
Control Tumor -
-~ = 81 A
0 5 viad B
= =) 2 - =) 2 / Contr Tum4r
® > S |
o S
@ — 21 — 2-
_CCU 0] | | o - ¢
@ 5 10 16 é 1|0 1|6
> run run
|
@)

Model log2(int) instead of ratios light/heavy
‘Run’ pairs endogenous and reference transitions from a same run



Linear mixed effects model describes the systematic B
and the random sources of variation

Example: ovarian cancer dataset

11 .
_ overa + subject 4+ feature+run + by run by random
mean or feature feature error
Yijkim = u o+ +5(G) i+ Fu + Ry + (G F),, +(RxF) 4 Eijkim
Fixed/Random F F F/R F F/R F F/R R: N(0,0?)

® Can express the scope of conclusions

F: restricted, e.g. S(G) (i) = O R: expanded, e.g. S(G)j(i;;é,d N(0,0%)
j=0

® In some cases, same conclusions as with the ratios

When no missing values, restricted scope of run, expanded scope of subject
® Advantage: can be modified to more generality

Missing values, flexible scopes, random interferences, unequal variance
® Can express other designs

Time course: add GxS§ interaction. Label-free: no R and RxF terms




14
Advantage: appropriately modifying the assumptions

improves the accuracy

_ overall + subject +feature by run by random
mean or feature feature error
yijkzlm — M + +S(G)](Z)+ Fkl (G X F):k:l +(R>< F)Zl"rn+ 5ijklm
Fixed/Random F F F/R F F F/R R: N(0,0?)
xpande\c)"s/cope of technical replication
o O Run:F
o o R ‘R
SRR R ENE Y
Estimated log-fold change:
N T
go_Herss;s;g;; . —
e « H H R e ratio: (y@ M, yOm)
] H H BB HRER-
| —_ —
8— T R A A (y’l,/ m/ yO m)
D o | sssisisssj
(Sh SRR R
' LI RERR : : _ _
NN T St intensity:  (Ysoom — W * Yo..orm)
2 | | | | | | | _(g'l/m/ — W - g()m’)
0 0.05 033 056 083 0.93 0.98

Between-run variation
Total variation

When between-run variation is small,
reference intensities are used less
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Advantage: better handling of missing data
Do not discard peaks with a missing counterpart

ratio: t-test
ratio: linear model
intensity: general modsl

Transitions missing at random

AR ~) ! :
= ratio:t—teé é 3
& ratio: linedr model | o g

=, méﬂansny: g:;eneiral mod?el

----DA@O O O

-~ {0 O QO®
1@
I

Jj

estimated FC

| — — |
1 1.25 1.5 1.75
true FC

Linear models have less variation

Transitions missing at low abundance
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Linear models have less bias

C.-Y. Chang et al., MCP, 2012
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Advantage: can compare

label-free and label-based designs by simulation

experimental design: labeling

Between-run variation S
— ap) Lo
Error variation o
Label-based o é =
O 0.5 N =}
I:l 2 O | :
LL
1 10 - ©
Dol
Label-free g
] 0.5 =
m 2 O 2
O 10
o

1 1.5 1.75
true FC

Caveat: this assumes same technical variation in both workflows.

In practice, label-free experiments can have larger variation.
C.-Y. Chang et al., MCP, 2012



Steps of statistical significance analysis

® Define the analysis protocol
Type of analysis and comparisons of interest
Scope of conclusions

Model type
e Normalization and quality control

® Model-based analysis

Specity the model

Perform-based comparisons
Control for multiple testing

® Use the experiment to gain insight into future studies
Compare strategies of future resource allocation

Calculate sample size of a future similar experiment

17



Finding differentially abundant proteins
Simple example: one protein, one feature per protein, label-free

* % Log(abundance) of
14 — L
- g —— a feature in a run
B> B S 12 7 /
C
>
<;_l];.#) %;J § 10 - o /
| L 8- o/
MS1 Ims 8 . :

® 'Two inter-dependent approaches
¢ Decision-based

= For each protein, decide whether it is differentially abundant
¢+ Ranking-based

= Rank the proteins for evidence of differential abundance

® Report a measure of confidence; account for # of proteins

18



False positive rate a

19

Simple example: one protein, one feature per protein, label-free

HO: ‘status quo’, no change in abundance, G — Gg =0
Ha: change in abundance, G, — Gg # 0

G1 — Go

v Estimate of variation

observed t =

no difference

~ Student distribution

® [False positive rate

Property of the decision rule

If
= HO is true

= we Infinitely measure the same protein

= use the same score cutoft

a/2

| expected t

AN

Distribution of the
score if HO is true

N

/

Reject HO

Output: decision for the
protein differentially
abundant or not)

FPR 1s the average proportion of false rejections = a



P-value

20

Simple example: one protein, one feature per protein, label-free

HO: ‘status quo’, no change in abundance, G — Gg =0
Ha: change in abundance, G, — Gg # 0

G1 — Go

v Estimate of variation

observed t =

no difference

~ Student distribution

p/2

Distribution of the
score if HO is true

N

| expected t :

-observed t observed t

® P-value

Property of the measurement

If
= HO 1s true

Output: evidence in
favor of differential

abundance

= we infinitely measure the same protein

P-value 1s the average proportion of scores more extreme than ¢
P-value 1s the lowest a that rejects HO



More complex models lead to a similar procedure

Example: label-free rat diet dataset

Quantity of interest:

Ho : L = finigh. — Hlow- = 0
Model-based estimate and test statistic:

A A I —_— A
L= Chigh+7 > (F xC)i high - Clow —
=1

I

~([—=

1=1

> (F' X C)i 10w

A

t= =&

SE(L) ~ Student distribution

In balanced datasets:
YIOW

# of conditions,

features, biol
and tech reps

~ Studenty i (r—1)+(1-1)J(K—1)

—_—

1stribution

A similar signal-to-noise ratio and a similar student distribution

MSstats2 calculates this automatically

21



Need to account for testing multiple proteins
What happens if we simultaneously test 2 proteins?

For each protein:
HO: ‘status quo’, no change in abundance, G — Gg =0
Ha: change in abundance, G, — G # 0

G1 - Gy

v Estimate of variation

observed t =

no difference

~ Student distribution

/

a/2 a/2

The area = FPR =« t for protein 1




Need to account for testing multiple proteins
What happens if we simultaneously test 2 proteins?

For each protein:
HO: ‘status quo’, no change in abundance, G — Gg =0

Ha: change in abundance, G, — G # 0 t for protein 2

observed t = G1 ~ So a/?
v Estimate of variation f
no difference . . .
~ Student distribution /
a/2

pad

».

The area = FPR = a




Need to account for testing multiple proteins 24

What happens if we simultaneously test 2 proteins?

For each protein:
HO: ‘status quo’, no change in abundance, G — Gg =0

Ha: change in abundance, G, — G # 0 t for protein 2

G1 - Gy

v Estimate of variation

observed t =

a/2

no difference

~ Student distribution

® P(at least one incorrect
decision) > a a/2

® The univariate FPR does

not hold for the list a/2 a/2

® Need to define a t for protein 1

multivariate error rate The co_mb/ned
areais > al




Differentially abundant features:
False Discovery Rate (FDR)

The outcome of testing HO for m features

# of proteins with
no detected difference

# of proteins with
detected difference

25

Total

# true non-diff. proteins U V
# true diff. proteins T S mij; —m — mg
Total m — R R m

® False discovery rate (FDR)

Property of the testing procedure
If

= we collect an infinite number of
measurements on the same group of proteins

FDR 1s the average proportion of false discoveries in the list of

proteins with detected difference

FDR = E [maX\(fR 1)]



Use p-values to control FDR

Vary the threshold while comparing decreasing p-values

® Change decision rule (property of the procedure)
Order least significant — most significant
p — value P(m) POm—1) -+ P@+1) | P(k) Pk—1) --- DP(1)
Compare to —q mT_lq . %q %q %q . %q
Is p < g7 No No No | Yes
Is significant? NoO NoO . NO Yes Yes Yes Yes

® Adjust the p-value (property of the test)
~ . . ™m
pj = min {mm (?p(k), 1)}

k=73,....m

adjusted p-value cut-off corresponds to the FDR

adjusted p-value (obtained with an alternative procedure)
is sometimes referred to as g-value

Benjamini and Hochberg, JRSS B, 57, p. 289, 1995



Steps of statistical significance analysis

Define the analysis protocol
Type of analysis and comparisons of interest
Scope of conclusions

Model type
Normalization and quality control

Model-based analysis
Specity the model
Perform-based comparisons

Control for multiple testing

Use the experiment to gain insight into future studies

Compare strategies of future resource allocation

Calculate sample size of a future similar experiment

27



Recall: H is how a statistician would use the data

to perform the comparisons

Subject selection Spectral acquisition

T

Healthy population Healthy subjects Spectra

abundance in
subject k

observed peak

1 mean abundance , Ly
Intensities

in population

M1k

|

|

|

|

|

|

|

|

|

:

|
Subect selection Spectral alchuisition
T T,

|

Disease subjects

Disease population Spectra

L abundance in
subject k

Y911 observed peak
intensities

(o mean abundance

|
|
|
|
|
|
:
in population :
|
|

\ /

Statistical inference: conclusions on [l1 — 2

A

Statistical model:
properties of
Yi.—Yo.

Potential dangers:

Bias: Y.i.— Y. systematically different from 1k — W2k

Inefficiency: Large Var(Yi.—Yo.)




Recall: Here is how a statistician would use the data 29
to perform the comparisons

Subject selection Spectral acquisition

T

Healthy population Healthy subjects Spectra

A

abundance in
subject k

observed peak

1 mean abundance , Ly
Intensities

in population

Hik Statistical model:

|

|

|

|

|

I

|

I

I -

i properties of
Subect selection Spectral acquisition Y 1. — Y 9..

T

Disease subjects

Disease population Spectra

L abundance in
subject k

Y911 observed peak
intensities

(o mean abundance

|
|
|
|
|
|
:
in population :
|
|

\ /

Statistical inference: conclusions on [l1 — 2

Potential dangers:

Bias: Y.i.— Y. systematically different from 1k — W2k

@ciency: Large Var(Yy. — Y. Focus of re_source
allocation




Linear mixed effects models are required to
evaluate the importance of various replicate types

30

Observed Systematic Random Random Random
feature = mean signal + deviation due to + deviation due to + deviation due to
intensity of disease group individual sample preparation measurement error
Yijkl = Group mean; + Indiv(Group);;y + Prep(Indiv)yj) + Error k)

~ N (07 OI2ndiv) ~ N (07 O-%’rep) ~ N (07 a%rror)
2 2 2 )
o . OPre Og 2
Var YH — VD) = 2 Indiv i p i rror
( ) I 1J IJK :

I: # individuals per disease group
J: # sample preps
K # replicate runs

A pilot
- 2 healt]
- multip]

experiment
ny individuals, 2 with diabetes
e sample preparations

- multip]

e LC-MS replicates

Variances of features

T
Biological Sample prep Technical

Source of variation



Linear mixed effects models are required to
evaluate the importance of various replicate types

31

Observed Systematic Random
feature = mean signal + deviation due to

intensity of disease group individual
Yijkl = Group mean; + Indiv(Group);gq)

~ N (07 OI2ndiv)

+

+

Random Random
deviation due to + deviation due to
sample preparation measurement error

Prep(Indiv)y ;) + Error k)
~ N (0, O-%’rep) ~ N (07 a%rror)

0% div | TPrep
Var(yg —yp) =2 Y +

I 1J
I: # individuals per disease group
J: # sample preps
K # replicate runs

Conclusion:
Maximize the number
of biological replicates

_I_

2
UError

IJK

|

1 sample prep, 1 tech. repl.
1 sample prep, 3 tech. repl.
3 sample prep, 3 tech. repl.

0 5 10 15 20 25 30
# 1individuals per disease group




Linear mixed effects models are required to
evaluate the value of blocking (e.g. plate or day)

Observed Systematic Random deviation Random Random
feature = mean signal + due to block + deviation due to + deviation due to
intensity of disease group (e.g. plate or day) individual measurement error

Vijkl = Group mean,; + Blockx + Indiv(Group);s; + Error;;k)
~ N (Oa 0-12310ck> ~ N (O' O_Izndiv) ~ N (07 O-g)rror)

A completely randomized design

I: # individuals per disease group

Large 05, randomized design
500K . .
) Small og,, .- randomized design

—— Randomized block design

2 2 2
Val‘(}_’H . }_’D) — 9 (JBlock + OIndiv + 9Error

I .
a
. . 15
A block-randomized design .
2 2
V&I‘(}_/‘H — }_fD> — 92 (Ulndiv + OError) IE
I N
ge |
>

Conclusion: Block-randomize

- if can not control a large source of variation
- if moderate sample size

0 5 10 15 20 25 30

# individuals per disease group
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Linear mixed effects models are required to

calculate the sample size

) .
\\ low abundance: 0 - \ - = FDR: 1% of changes
< \ —— ratio: t—test -\ . FPR: 50% of changes
Y intensity: general model Q. : — Single feature
Q 3 \
S ' . O :
O s \ high abundance: S) o |- \
Sy~ | ' — = ratio: t-test C 91" :
w \ intensity: general model o " \
2 S
2] . .
(2 21 0 " \
&) 0 " N
o | .

;% g LO T, . N R
S O - 7] . .
%) +H el TS o
3 \ Tl _

_ o T

1.1 1.2 1.3 1.1 1.2 1.3 1.4 1.5
desired fold change desired fold change
® Need prior information to plan sample size
statistical model for data analysis
Oberg and estimates of sources of variation
Vitek, JPR, expected proportion of differentially abundant proteins

2009




A lot must be known in advance >

to calculate the sample size

Need to know in advance:
q - the False Discovery Rate
mg/m; - anticipated ratio of unchanging features

[ - probability of a true positive discovery

A - anticipated fold change

0?2 qiv and 0. - anticipated variance

Var(3i - yp) = 2 [ Zloaiv 4 TProp | TBinor
r — —
ar\ys — YD I 1J K

Then calculate:

A 2 r(Ver — _ OI2ndiv + 0-12*31'1'01')
Var(yu — yp) < ( ) Var(yu — ¥p) = 2( I
Z1-8 + 2] /2

where z1_g and Z1-.,2 are Normal quantiles
1
1+ (1—q) mo/my

=3 Then solve for the number of replicates

Qave < (]- — 6)ave q

Alternatively, fix sample size and solve for one other number




Open-source R-based software for protein quantification *

www.stat.purdue.edu/~ovitek

Veavi Chang Tim Clough

Purdue Purdue | S
Meena Choi (als2
Purdue |

Statistical protein quantification

. . . Shotgun & SRM
® Recognizes experimental designs | abel-based & label-free

¢ time course/group comparison

® Data visualization and quality control

¢ data plots, model-checking plots Since Dec 2011:
, e 285 unique visitors
® Model fitting e over 50 unique downloads
¢ unequal variance, pooling interactions e over 50 mailing list members

® Model-based conclusions

¢ group comparison & sample quantification Now:
- : integration
® Planning future experiments with Skyline

Skyline

¢ number of replicates, peptides, transitions



http://www.stat.purdue.edu/~tclough/MSstats/MSstats.html
http://www.stat.purdue.edu/~tclough/MSstats/MSstats.html

Concluding thoughts

® More sophisticated models lead to more accurate conclusions
It 1s worthwhile to invest time and effort

Software implementation facilitates the task

® More model flexibility means more analysis choices
Define the data analysis protocol before seeing the data

Do not change the protocol after seeing the data

e Ultilize consistent computational tools to facilitate reporting,
re-analysis and peer review

Skyline is great! Now with the statistical tools.

® Involve a statistician 1n all steps of planning and analysis!

36
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