
Plan for the day

● Morning
◆ 9:00am-10:00am     Olga: Statistical experimental design
◆ 10:00am-10:30am   Brendan: Data processing with Skyline
◆ 10:30am-11:00am   Coffee
◆ 11:00am-12:00pm   Brendan: Data processing with Skyline

● Afternoon
◆ 1:00pm-2:00pm       Olga: Statistical significance analysis
◆ 2:00pm-2:30pm       Meena: Statistical analysis case studies
◆ 2:30pm-3:00pm       Coffee
◆ 3:00pm-4:00pm       Meena: Statistical analysis case studies
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Steps of statistical significance analysis

● Define the analysis protocol
◆ Type of analysis and comparisons of interest
◆ Scope of conclusions
◆ Model type

● Normalization and quality control

● Model-based analysis
◆ Specify the model
◆ Perform-based comparisons 
◆ Control for multiple testing

● Use the experiment to gain insight into future studies
◆ Compare strategies of future resource allocation 
◆ Calculate sample size of a future similar experiment
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Example: ovarian 
cancer dataset

3

Endogenous peptides

◆ 5 cancer patients and 10 controls
◆ 3 peptides/protein; 3 transitions/peptide

Brendan, with Skyline:
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Meena, with MSstats2:

Highlights peak areas

Highlights between-run 
and between-peptide 

interferences

Colors = peptides
Line types = transitions



Differentially abundant proteins are not always biomarkers
4

Biomarker: a (molecular) measurement 
•  predictive of the outcome of the disease or 
•  predictive of therapy response
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and predictive
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and not predictive

Healthy population

(all healthy individuals)

- mean feature abundance!
H

!

(a) Random sample of individuals

Healthy individuals in  study

- observed mean! yH

Disease population

(all disease individuals)

- mean feature abundance!
D

!

(a) Random sample of individuals

Disease individuals in  study

- observed mean! yD

(c) Inference (conclusions regarding !
D

!
H

)

(b) Statistical 

model

(properties of

yHyD )

yH

yD

Healthy Disease

(a) No replication

F
e

a
tu

re
 i
n

te
n

s
it
y

yH

yD

Healthy Disease

(c) Not a significant difference

F
e

a
tu

re
 i
n

te
n

s
it
y

yH

yD

Healthy Disease

(b) A significant difference

F
e

a
tu

re
 i
n

te
n

s
it
y

yDd
3

yH

Healthy Disease

(a) Sequential acquisition

F
e

a
tu

re
 i
n

te
n

s
it
y

d
2

d
2

d
1

d
1

d
4

d
4

d
3

Healthy Disease

d
4

d
3

d
2

d
1

(c) Day = block
F

e
a

tu
re

 i
n

te
n

s
it
y

(b) Complete randomization

yH

yD

Healthy Disease

F
e

a
tu

re
 i
n

te
n

s
it
y

d
3

d
3

d
2

d
2

d
4

d
4

d
1

d
1

Observed Systematic Random deviation
feature = mean signal + due to all sources

intensity of disease group of variation

yij = Group meani + Errorj(i)

� N
�
0, �2

⇥

1

standard Normal distribution. The formula can be applied to variances of c
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Not differentially 
abundant but 

predictive

Differentially 
abundant

PredictiveSingle protein:

Protein 1

P
ro

te
in

 2

Biomarker: a (molecular) measurement 
•  predictive of the outcome of the disease or 
•  predictive of therapy response

Biomarkers are not always differentially abundant proteins

Since the ovarian cancer study is a screening experiment,
testing is appropriate



Different scope of conclusions ask different biological 
questions and leads to different results
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Protein significance analysis in SRM measurements
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Monday, December 5, 2011

Label Feature: Transition/Peptide SubjectGroup RunLegend :

Group 1 · · · Group I
(Time 1) · · · (Time I)

Run 1 · · · · · · · · · · · · · · · Run M
Subject 1 · · · Subject J · · · Subject 1 · · · Subject J

Peptide 1 Transition 1 10.21 · · · 10.57 · · · 15.64 · · · 15.03
... · · · · · · · · ·

Endogenous: Transition L 10.52 · · · 10.92 · · · 15.29 · · · 15.68

light labeled
...

... · · · · · · · · ·
peptide Peptide K Transition 1 11.76 · · · 11.92 · · · 16.22 · · · 16.71

... · · · · · · · · ·
Transition L 11.65 · · · 11.09 · · · 16.27 · · · 16.51

Peptide 1 Transition 1 19.46 · · · 19.77 · · · 19.82 · · · 19.03
... · · · · · · · · ·

Reference: Transition L 19.13 · · · 19.25 · · · 19.67 · · · 19.80

heavy labeled
...

... · · · · · · · · ·
peptide Peptide K Transition 1 19.26 · · · 19.33 · · · 19.58 · · · 19.61

... · · · · · · · · ·
Transition L 19.73 · · · 19.09 · · · 19.84 · · · 19.55

1

Saturday, February 26, 2011

Figure 3: Data representation in SRM experiments. (A) Illustration of the scope of validity
of our conclusions with respect to the biological variation. The reduced scope of conclusions
compares the average protein abundance between conditions in the subjects selected for
the study (red lines). The expanded scope of conclusions compares the average protein
abundances in the populations (blue lines). The two conclusions can disagree when the
biological variation in the populations is large. (B) As in A, but with small biological
variation. There is little di↵erence between the two scopes of conclusions in this case. (C)
Illustration of blocking. The label-free experiment compares the averages of the endogenous
transitions (red lines). The label-based workflow considers deviations of the endogenous
transitions from their references (dashed vertical lines), and is more sensitive at detecting
the change. (D) Measurements from a protein for a group comparison or a time course
label-based SRM experiment. Entries in the table are log-intensities of transitions, they are
grouped according to shared sources of variation.

38

Larger biological 
variation requires 
more replicates 

Since the ovarian cancer study is a screening experiment,
testing with a restricted scope of conclusions is appropriate

These considerations, and the extent of anticipated interferences in 
peak intensities, defines the model type

C.-Y. Chang et al., MCP, 2012



Steps of statistical significance analysis

● Define the analysis protocol
◆ Type of analysis and comparisons of interest
◆ Scope of conclusions
◆ Model type

● Normalization and quality control

● Model-based analysis
◆ Specify the model
◆ Perform-based comparisons 
◆ Control for multiple testing

● Use the experiment to gain insight into future studies
◆ Compare strategies of future resource allocation 
◆ Calculate sample size of a future similar experiment
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In label-based SRM, reference intensities
 serve as internal normalization factors
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Synthetic 
standards

Label Feature: Transition/Peptide SubjectGroup RunLegend :

Group 1 · · · Group I
Run 1 · · · · · · · · · · · · · · · Run M

Subject 1 · · · Subject J · · · Subject 1 · · · Subject J

Peptide 1 Transition 1 10.21 · · · 10.57 · · · 15.64 · · · 15.03
... · · · · · · · · ·

Endogenous: Transition L 10.52 · · · 10.92 · · · 15.29 · · · 15.68

light labeled
...

... · · · · · · · · ·
peptide Peptide K Transition 1 11.76 · · · 11.92 · · · 16.22 · · · 16.71

... · · · · · · · · ·
Transition L 11.65 · · · 11.09 · · · 16.27 · · · 16.51

Peptide 1 Transition 1 19.46 · · · 19.77 · · · 19.82 · · · 19.03
... · · · · · · · · ·

Reference: Transition L 19.13 · · · 19.25 · · · 19.67 · · · 19.80

heavy labeled
...

... · · · · · · · · ·
peptide Peptide K Transition 1 19.26 · · · 19.33 · · · 19.58 · · · 19.61

... · · · · · · · · ·
Transition L 19.73 · · · 19.09 · · · 19.84 · · · 19.55

1

Wednesday, January 19, 2011

Transitions

Normalization is performed as part of the 
model-based significance analysis



In label-free SRM, pre-analysis normalization 
is more important (and more difficult!)

9

● Constant normalization
◆ Normalize with respect to all features in the run, or to controls
■ Controls: less biological variation, more technical variation

◆ Assumption: all runs have the same median log(intensity)
■ Subtract median[log(intensity)] (of the controls) in the run
■ Add the median of all medians

● Quantile normalization
◆ Assumption: all runs have the same                                      

distribution of intensities
■ Not just the medians!
■ Too aggressive when the number of                                              

features is small (in hundreds)
◆ Global normalization has worked                                                  

best for us so far
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Steps of statistical significance analysis

● Define the analysis protocol
◆ Type of analysis and comparisons of interest
◆ Scope of conclusions
◆ Model type

● Normalization and quality control

● Model-based analysis
◆ Specify the model
◆ Perform-based comparisons 
◆ Control for multiple testing

● Use the experiment to gain insight into future studies
◆ Compare strategies of future resource allocation 
◆ Calculate sample size of a future similar experiment

10



Linear mixed effects model describes the systematic 
and the random sources of variation

11
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Example: ovarian cancer dataset

Model log2(int) instead of ratios light/heavy 
‘Run’ pairs the endogenous and reference intensities
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(a) case-control:
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fixed/random F F F/R F F/R F F/R R: N(0,�2)

(b) time course:

yijklm = µ + Ti + Sj + Fkl + Rm + (T � S)ij + (T � F )*ikl +(R� F )*klm+ �ijklm

fixed/random F F F/R F F/R F/R F F/R R: N(0,�2)
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fixed/random F F F/R F F/R F/R F F/R R: N(0,�2)
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Example: ovarian cancer dataset

Model log2(int) instead of ratios light/heavy 
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● Can express the scope of conclusions
◆ F: restricted, e.g.                                R: expanded, e.g. 

● In some cases, same conclusions as with the ratios
◆ When no missing values, restricted scope of run, expanded scope of subject

● Advantage: can be modified to more generality
◆ Missing values, flexible scopes, random interferences, unequal variance

● Can express other designs 
◆ Time course: add GxS interaction. Label-free: no R and RxF terms
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Figure 4: Proposed family of intensity-based linear mixed-e↵ects model for a label-based
SRM experiment. y

ijklm

denotes the log-intensities of the observed transitions from treat-
ment Group or time point i = 0, . . . , I, biological replicate Subject j = 0, . . . , J , Peptide
k = 1, . . . , K, Transition l = 1, . . . , L, Run m = 1, . . . ,M of a protein. Index 0 refers to
the reference transitions. Model terms are specified as fixed e↵ects subjected to zero-sum
constraints. Random terms follow Normal distributions with mean 0 and their correspond-
ing variances. The scope of biological variation can be restricted (Subject as fixed e↵ect,
denoted F), or expanded (Subject as random e↵ect, denoted R). The scope of technical MS
run variation can be restricted (Run as fixed e↵ect, denoted F), or expanded (Run as random
e↵ect, denoted R). A separate model is specified for each protein. (a) Group comparison
experiment. (b) Time course experiment.

39

Protein significance analysis in SRM measurements

Systematic deviations from the mean Statistical interactions

Observed
log2(int of peak)

=
Overall
mean

+
Group
or time

+Subject+Feature+Run+
Time by
subject

+
Group by

feature
+

Run by
feature

+
Random

error

(a) group comparison:

yijklm = µ + Gi +S(G)j(i)+ Fkl + Rm + (G � F )ikl +(R � F )klm+ �ijklm

Subject: F; Run: F
IX

i=0

Gi = 0
JX

j=0

S(G)j(i) = 0
KLX

k,l=1

Fkl = 0
MX

m=1

Rm = 0

IX

i=0

(G � F )ikl = 0

KLX

k,l=1

(G � F )ikl = 0

MX

m=1

(R � F )klm = 0

KLX

k,l=1

(R � F )klm = 0

iid� N(0, �2)

Subject: R; Run: F iid� N(0, �2
S)

Subject: F; Run: R iid� N(0, �2
R)

iid� N(0, �2
RF )

Subject: R; Run: R iid� N(0, �2
S)

iid� N(0, �2
R)

iid� N(0, �2
RF )

(b) time course:

yijklm = µ + Ti + Sj + Fkl + Rm + (T � S)ij + (T � F )ikl +(R � F )klm+ �ijklm

Subject: F; Run: F
IX

i=0

Ti = 0
JX

j=0

Sj = 0
KLX

k,l=1

Fkl = 0
MX

m=1

Rm = 0

IX

i=0

(T � S)ij = 0

JX

j=0

(T � S)ij = 0

IX

i=0

(T � F )ikl = 0

KLX

k,l=1

(T � F )ikl = 0

MX

m=1

(R � F )klm = 0

KLX

k,l=1

(R � F )klm = 0

iid� N(0, �2)

Subject: R; Run: F iid� N(0, �2
S)

iid� N(0, �2
T S)

Subject: F; Run: R iid� N(0, �2
R)

iid� N(0, �2
RF )

Subject: R; Run: R iid� N(0, �2
S)

iid� N(0, �2
R)

iid� N(0, �2
T S)

iid� N(0, �2
RF )

1

Figure 4: Proposed family of intensity-based linear mixed-e↵ects model for a label-based
SRM experiment. y

ijklm

denotes the log-intensities of the observed transitions from treat-
ment Group or time point i = 0, . . . , I, biological replicate Subject j = 0, . . . , J , Peptide
k = 1, . . . , K, Transition l = 1, . . . , L, Run m = 1, . . . ,M of a protein. Index 0 refers to
the reference transitions. Model terms are specified as fixed e↵ects subjected to zero-sum
constraints. Random terms follow Normal distributions with mean 0 and their correspond-
ing variances. The scope of biological variation can be restricted (Subject as fixed e↵ect,
denoted F), or expanded (Subject as random e↵ect, denoted R). The scope of technical MS
run variation can be restricted (Run as fixed e↵ect, denoted F), or expanded (Run as random
e↵ect, denoted R). A separate model is specified for each protein. (a) Group comparison
experiment. (b) Time course experiment.

39

Protein significance analysis in SRM measurements

Systematic deviations from the mean Statistical interactions

Observed
log2(int of peak)

=
Overall
mean

+
Group
or time

+Subject+Feature+Run+
Time by
subject

+
Group by

feature
+

Run by
feature

+
Random

error

(a) group comparison:

yijklm = µ + Gi +S(G)j(i)+ Fkl + Rm + (G � F )ikl +(R � F )klm+ �ijklm

Subject: F; Run: F
IX

i=0

Gi = 0
JX

j=0

S(G)j(i) = 0
KLX

k,l=1

Fkl = 0
MX

m=1

Rm = 0

IX

i=0

(G � F )ikl = 0

KLX

k,l=1

(G � F )ikl = 0

MX

m=1

(R � F )klm = 0

KLX

k,l=1

(R � F )klm = 0

iid� N(0, �2)

Subject: R; Run: F iid� N(0, �2
S)

Subject: F; Run: R iid� N(0, �2
R)

iid� N(0, �2
RF )

Subject: R; Run: R iid� N(0, �2
S)

iid� N(0, �2
R)

iid� N(0, �2
RF )

(b) time course:

yijklm = µ + Ti + Sj + Fkl + Rm + (T � S)ij + (T � F )ikl +(R � F )klm+ �ijklm

Subject: F; Run: F
IX

i=0

Ti = 0
JX

j=0

Sj = 0
KLX

k,l=1

Fkl = 0
MX

m=1

Rm = 0

IX

i=0

(T � S)ij = 0

JX

j=0

(T � S)ij = 0

IX

i=0

(T � F )ikl = 0

KLX

k,l=1

(T � F )ikl = 0

MX

m=1

(R � F )klm = 0

KLX

k,l=1

(R � F )klm = 0

iid� N(0, �2)

Subject: R; Run: F iid� N(0, �2
S)

iid� N(0, �2
T S)

Subject: F; Run: R iid� N(0, �2
R)

iid� N(0, �2
RF )

Subject: R; Run: R iid� N(0, �2
S)

iid� N(0, �2
R)

iid� N(0, �2
T S)

iid� N(0, �2
RF )

1

Figure 4: Proposed family of intensity-based linear mixed-e↵ects model for a label-based
SRM experiment. y

ijklm

denotes the log-intensities of the observed transitions from treat-
ment Group or time point i = 0, . . . , I, biological replicate Subject j = 0, . . . , J , Peptide
k = 1, . . . , K, Transition l = 1, . . . , L, Run m = 1, . . . ,M of a protein. Index 0 refers to
the reference transitions. Model terms are specified as fixed e↵ects subjected to zero-sum
constraints. Random terms follow Normal distributions with mean 0 and their correspond-
ing variances. The scope of biological variation can be restricted (Subject as fixed e↵ect,
denoted F), or expanded (Subject as random e↵ect, denoted R). The scope of technical MS
run variation can be restricted (Run as fixed e↵ect, denoted F), or expanded (Run as random
e↵ect, denoted R). A separate model is specified for each protein. (a) Group comparison
experiment. (b) Time course experiment.

39



Advantage: appropriately modifying the assumptions
improves the accuracy

14

(a) Specificity: fold change=1 (b) Sensitivity: fold change=1.5

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●
●

●
●
●

●

●
●
●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●●
●●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●●●

●

●

●●
●

●

●

●●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●
●
●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

w

−
lo

g
2
(F

D
R
−

a
d
ju

s
te

d
 p
−

v
a
lu

e
)

0 0.05 0.33 0.56 0.83 0.93 0.98

0
1
0

2
0

3
0 Run: F

Run: R
●

●●
●

●●●

●

●●

●
●

●

●
●

●●
●

●

●

●●

●

●●

●●

●

●
●

●●
●

●

●●

●

●

●

●

●●●
●

●●
●

●

●

●

●

●

●
●●
●●

●

●●
●

●

●

●

●●

●

●●

●

●●
●

●
●

●

●
●

●●
●

●

●
●

●

w

−
lo

g
2
(F

D
R
−

a
d
ju

s
te

d
 p
−

v
a
lu

e
)

0 0.05 0.33 0.56 0.83 0.93 0.98

0
1
0

2
0

3
0 Run: F

Run: R

(c) Precision: fold change=1 (d) Precision: fold change=1.5
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Figure 21: Comparative performance of the models with restricted and expanded scope of technical repli-
cation on the synthetic dataset. X-axis: w, the proportion of the total variation in the data that is due to
the variation between runs (Figure 11). (a)-(b) Specificity of testing in absence of changes in abundance,
and sensitivity of detecting a 1.5 fold change. Y-axis: -log2(FDR-adjusted p-value). Higher values indicate
stronger evidence for di�erential abundance. The horizontal line indicates the FDR cuto� of 0.05. (c)-(d)
precision of the estimation of the fold change. Y-axis: model-based estimates of fold change. The horizontal
line indicates the true value.
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Expanded scope of technical replication
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�(ȳi�···m� � ȳ0···m�)
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4�2

JKL �
2�2(1�w)

JKL + 2�2
S

J I(J-I)

Subject: R

Run: R
time course w =

KL�2
R+�2

RF

KL�2
R+�2

RF +�2
4�2

JKL �
2�2(1�w)

JKL + 2�2
TS

J (I-1)(J-I)

1Figure 11: Model-based quantities for testing H0 : µi � µi� = 0 against the alternative Ha : µi � µi� ⇥= 0 in
balanced experiments. The same testing procedure holds for both case-control and time course experiments.
All terms are as defined in Figure 3-Figure 6. E1 and E2 indicate two classes of models which yield equivalent
testing results.

14

Estimated log-fold change:

ratio:

intensity:



Advantage: better handling of missing data 15

(a) Homogeneous features; (b) Homogeneous features;
missing at random missing at low abundance
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(c) Heterogeneous features; (d) Heterogeneous features;
missing at random missing at low abundance
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Figure 23: Comparative performance of the models based on log-ratios of the endogenous and reference
transitions, versus the models for the individual intensities, in presence of missing data. X-axis: true fold
change. Y-axis: model-based estimates of fold change. The horizontal line represents the true fold change.
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(a) Homogeneous features; (b) Homogeneous features;
missing at random missing at low abundance
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(c) Heterogeneous features; (d) Heterogeneous features;
missing at random missing at low abundance
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Figure 23: Comparative performance of the models based on log-ratios of the endogenous and reference
transitions, versus the models for the individual intensities, in presence of missing data. X-axis: true fold
change. Y-axis: model-based estimates of fold change. The horizontal line represents the true fold change.
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Systematic bias due 
to missing values

Transitions missing at random Transitions missing at low abundance

Linear models have less variation Linear models have less bias

(a) Homogeneous features; (b) Homogeneous features;
missing at random missing at low abundance
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(c) Heterogeneous features; (d) Heterogeneous features;

missing at random missing at low abundance
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Figure 23: Comparative performance of the models based on log-ratios of the endogenous and reference
transitions, versus the models for the individual intensities, in presence of missing data. X-axis: true fold
change. Y-axis: model-based estimates of fold change. The horizontal line represents the true fold change.

28

Do not discard peaks with a missing counterpart

C.-Y. Chang et al., MCP, 2012



Advantage: can compare 
label-free and label-based designs by simulation

16
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Caveat: this assumes same technical variation in both workflows. 
In practice, label-free experiments can have larger variation.

C.-Y. Chang et al., MCP, 2012



Steps of statistical significance analysis

● Define the analysis protocol
◆ Type of analysis and comparisons of interest
◆ Scope of conclusions
◆ Model type

● Normalization and quality control

● Model-based analysis
◆ Specify the model
◆ Perform-based comparisons 
◆ Control for multiple testing

● Use the experiment to gain insight into future studies
◆ Compare strategies of future resource allocation 
◆ Calculate sample size of a future similar experiment

17



Finding differentially abundant proteins

● Two inter-dependent approaches
◆ Decision-based
■ For each protein, decide whether it is differentially abundant

◆ Ranking-based
■ Rank the proteins for evidence of differential abundance

● Report a measure of confidence; account for # of proteins

18
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Log(abundance) of 
a feature in a run 

Simple example: one protein, one feature per protein, label-free



● False positive rate
◆ Property of the decision rule
◆ If

False positive rate α 19

expected t

Distribution of the 
score if H0 is true

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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Simple example: one protein, one feature per protein, label-free

Reject H0

α/2α/2

■ H0 is true
■ we infinitely measure the same protein
■ use the same score cutoff

◆ FPR is the average proportion of false rejections = α

Output: decision for the 
protein differentially 

abundant or not)



● P-value
◆ Property of the measurement
◆ If

P-value 20

■ H0 is true 
■ we infinitely measure the same protein

◆ P-value is the average proportion of scores more extreme than t
◆ P-value is the lowest α that rejects H0
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conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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Simple example: one protein, one feature per protein, label-free
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favor of differential 

abundance 



More complex models lead to a similar procedure 21

Example: label-free rat diet dataset

A similar signal-to-noise ratio and a similar student distribution
MSstats2 calculates this automatically

Quantity of interest:

H
0

: L = µ̄
high· � µ̄

low· = 0

Model-based estimate and test statistic:

L̂ = Ĉ
high

+ 1

I

IP
i=1

( dF ⇥ C)i, high - Ĉ
low

� 1

I

IP
i=1

( dF ⇥ C)i, low

t =
ˆL

SE{ˆL} ⇠ Student distribution

In balanced datasets:

L̂ = Ȳ·high·· � Ȳ·low··

t =
ˆLp

2
IKL

�̂2
Error

⇠ StudentIJK(L�1)+(I�1)J(K�1) distribution

Figure 1: Model-based comparison of protein abundance between cell line types
after six hours of normoxia, with reduced scope of biological replication. All
notation is as in Figure ??. µ̄

[high,nm,6]· is the expected log-abundance of the
protein in the high-invasive line under normoxia, after 6 hours of exposure, on
average in all the observed biological replicates. Other conditions are denoted
similarly. “ b ” indicates that the terms are estimated from the data.

1

# of conditions, 
features, biol 
and tech reps



Need to account for testing multiple proteins
What happens if we simultaneously test 2 proteins?
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t for protein 1

α/2 α/2

H0: ‘status quo’, no change in abundance,
Ha: change in abundance,

# of features with # of features with Total
no detected di�erence detected di�erence

# true non-di�. features U V m0

# true di�. features T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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are random quantities, but only R is observed.
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The area = FPR = α
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t for protein 2

α/2
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The area = FPR = α

H0: ‘status quo’, no change in abundance,
Ha: change in abundance,
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Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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Ĝ1 � Ĝ0 ⇥= 0 (2)

FDR = E
�

V
max(R,1)

⇥
. (3)

FWER = P [V > 0] . (4)

FPR = E
�

V
m0

⇥
. (5)

1

For each protein:

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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t for protein 2

α/2

α/2

t for protein 1

α/2 α/2

The combined 
area is > α !

● P(at least one incorrect 
decision) > α

● The univariate FPR does 
not hold for the list

● Need to define a 
multivariate error rate

H0: ‘status quo’, no change in abundance,
Ha: change in abundance,
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no detected di�erence detected di�erence

# true non-di�. features U V m0

# true di�. features T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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Ĝ1 � Ĝ0 ⇥= 0 (2)

FDR = E
�

V
max(R,1)

⇥
. (3)

FWER = P [V > 0] . (4)

FPR = E
�

V
m0

⇥
. (5)

1

# of features with # of features with Total
no detected di�erence detected di�erence

# true non-di�. features U V m0

# true di�. features T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.

�

⇥

�
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Differentially abundant features:
False Discovery Rate (FDR)

25

The outcome of testing H0 for m features

● False discovery rate (FDR)
◆ Property of the testing procedure
◆ If

# of features with # of features with Total
no detected di�erence detected di�erence

# true non-di�. features U V m0

# true di�. features T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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are random quantities, but only R is observed.
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1

■ we collect an infinite number of 
measurements on the same group of proteins

◆ FDR is the average proportion of false discoveries in the list of 
proteins with detected difference



Use p-values to control FDR 26
Controlling FDR by the

approach of

Benjamini-Hochberg

Order least significant =⇤ most significant

p� value p(m) p(m�1) . . . p(k+1) p(k) p(k�1) . . . p(1)

Compare to m
m

q m�1
m

q . . . k+1
m

q k
m

q k�1
m

q . . . 1
m

q

Is p ⇥ q? No No . . . No Yes
Is significant? No No . . . No Yes Yes Yes Yes

17-32

 
◆ adjusted p-value cut-off corresponds to the FDR

Frequentist approaches to controlling multivariate type I error 7

Procedure

1. Order the p-values
p(1) ⇥ p(2) ⇥ . . . ⇥ p(m) (10)

2. Starting with the largest p-value, compare p(j) to a �j = f(�⇥, j) as follows

p� value p(m) p(m�1) . . . p(K+1) p(K) p(K�1) . . . p(1)

� m
m�⇥ m�1

m �⇥ . . . K+1
m �⇥ K

m�⇥ K�1
m �⇥ . . . 1

m�⇥

p ⇥ � No No . . . No Yes ? . . . ?
(11)

Once the first statistic is encountered such that p ⇥ �, reject that null hypothesiss, and all others with
a lower p-value.

This is equivalent to adjusting each p-value by

p̃j = min
k=j,...,m

�
min

�m

k
p(k), 1

⇥ 
(12)

The outer minimization ensures that the order of the p-values is preserved, while the inside minimization
ensures that all p-values remain below 1.

Comments

In 2001, Benjamini and Yekutieli showed that this procedure tolerates positive regression dependence, but
not general dependence. However, they were able to modify it such that it does control the FDR under
general dependence, using

p̃j = min
k=j,...,m

⇧
min

⇤
m
⌥m

t=1 1/t

k
p(k), 1

⌅⌃
(13)

This is generally considered too conservative unless the dependence structure of the data requires it.
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● Change decision rule (property of the procedure)

● Adjust the p-value (property of the test)

◆ adjusted p-value (obtained with an alternative procedure) 
is sometimes referred to as q-value

Benjamini and Hochberg, JRSS B, 57, p. 289, 1995

Vary the threshold while comparing decreasing p-values



Steps of statistical significance analysis

● Define the analysis protocol
◆ Type of analysis and comparisons of interest
◆ Scope of conclusions
◆ Model type

● Normalization and quality control

● Model-based analysis
◆ Specify the model
◆ Perform-based comparisons 
◆ Control for multiple testing

● Use the experiment to gain insight into future studies
◆ Compare strategies of future resource allocation 
◆ Calculate sample size of a future similar experiment

27



Statistical inference: conclusions on 

Recall: H is how a statistician would use the data
to perform the comparisons

28

Subject selection Spectral acquisition

Subect selection Spectral acquisition
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Statistical model: 
properties of
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Statistical inference: conclusions on 

Recall: Here is how a statistician would use the data
to perform the comparisons
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Linear mixed effects models are required to
evaluate the importance of various replicate types
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A pilot experiment
- 2 healthy individuals, 2 with diabetes
- multiple sample preparations
- multiple LC-MS replicates

I: # individuals per disease group
J: # sample preps
K: # replicate runs
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Linear mixed effects models are required to
evaluate the importance of various replicate types

31

Observed Systematic Random deviation
feature = mean signal + due to all sources

intensity of disease group of variation

yij = Group meani + Errorj(i)

� N
`
0, �2

´

Observed Systematic Random Random Random
feature = mean signal + deviation due to + deviation due to + deviation due to

intensity of disease group individual sample preparation measurement error

yijkl = Group meani + Indiv(Group)j(i) + Prep(Indiv)k(ij) + Errorl(ijk)

� N
`
0, �2

Indiv

´
� N

`
0, �2

Prep

´
� N

`
0, �2

Error

´
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(ȳ
H
�
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32Linear mixed effects models are required to 
evaluate the value of blocking (e.g. plate or day) 
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I: # individuals per disease group

A block-randomized design 

Conclusion: Block-randomize 
- if can not control a large source of variation
- if moderate sample size
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Linear mixed effects models are required to 
calculate the sample size

33
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● Need prior information to plan sample size
◆ statistical model for data analysis
◆ estimates of sources of variation
◆ expected proportion of differentially abundant proteins
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2009



A lot must be known in advance
to calculate the sample size

34

Then calculate:
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andwhere are Normal quantiles

Then solve for the number of replicates
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# true di�. features T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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�

�
z1�⇥ + z1��/2

⇥2

, (3)

where z1�⇥ and z1��/2 are respectively the 100(1� ⇥)th and the 100(1� �/2)th percentiles of the

standard Normal distribution. The formula can be applied to variances of c
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Var(ȳH � ȳD) ⇤
�

�
z1�⇥ + z1��/2

⇥2

, (3)

where z1�⇥ and z1��/2 are respectively the 100(1� ⇥)th and the 100(1� �/2)th percentiles of the

standard Normal distribution. The formula can be applied to variances of c
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- the False Discovery Rate
- anticipated ratio of unchanging features
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Need to know in advance:

Observed Systematic Random deviation
feature = mean signal + due to all sources

intensity of disease group of variation

yij = Group meani + Errorj(i)
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�
�2
Indiv

I
+

�2
Prep

IJ
+

�2
Error

IJK

⇥
. (1)

Observed Systematic Random deviation Random Random
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Alternatively, fix sample size and solve for one other number
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www.stat.purdue.edu/~ovitek

● Recognizes experimental designs
◆ time course/group comparison

● Data visualization and quality control
◆ data plots, model-checking plots  

● Model fitting
◆ unequal variance, pooling interactions 

● Model-based conclusions
◆ group comparison & sample quantification

● Planning future experiments
◆ number of replicates, peptides, transitions

Veavi Chang
Purdue

Meena Choi
Purdue

Now: 
integration 

with Skyline

Since Dec 2011:
•  285 unique visitors
•  over 50 unique downloads
•  over 50 mailing list members

Tim Clough
Purdue

Statistical protein quantification
Shotgun & SRM

Label-based & label-free

http://www.stat.purdue.edu/~tclough/MSstats/MSstats.html
http://www.stat.purdue.edu/~tclough/MSstats/MSstats.html


Concluding thoughts

● More sophisticated models lead to more accurate conclusions
◆ It is worthwhile to invest time and effort
◆ Software implementation facilitates the task

● More model flexibility means more analysis choices
◆ Define the data analysis protocol before seeing the data
◆ Do not change the protocol after seeing the data 

● Utilize consistent computational tools to facilitate reporting, 
re-analysis and peer review 
◆ Skyline is great! Now with the statistical tools.

● Involve a statistician in all steps of planning and analysis! 
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