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Quantitative proteomic workflows: global (unbiased)
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Quantitative proteomic workflows: targeted
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Today: label-based and label-free SRM
But most of the discussion generally applies
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Scope of discussion: finding differentially abundant proteins
Experimental design, signal processing, significance analysis  

● Stochastic variation and uncertainty are unavoidable
◆ Biological variation: natural variation in protein abundance
◆ Technical variation: sampling handling, storage, processing
◆ Mass spectrometric variation: elution time, ion suppression
◆ Signal processing: ambiguous peak boundaries, identity, intensity

● Statistical reasoning enables efficient, reproducible research
◆ Experimental design: unbiased and resource-efficient experiments
◆ Data analysis: objective conclusions in presence of uncertainty
◆ Statistical tools: re-analysis, peer review, reproducibility

5



Plan for the day

● Morning
◆ 9:00am-10:00am     Olga: Statistical experimental design
◆ 10:00am-10:30am   Brendan: Data processing with Skyline
◆ 10:30am-11:00am   Refreshments
◆ 11:00am-12:00pm   Brendan: Data processing with Skyline

● Afternoon
◆ 1:00pm-2:00pm       Olga: Statistical significance analysis
◆ 2:00pm-2:30pm       Meena: Statistical analysis case studies
◆ 2:30pm-3:00pm       Refreshments
◆ 3:00pm-4:00pm       Meena: Statistical analysis case studies
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Steps of statistical experimental design

● Define the problem
◆ Populations of interest
◆ Comparisons of interest
◆ Scope of conclusions

● Utilize 3 principles of experimental design
◆ Replication
◆ Randomization
◆ Blocking: known biological and technical variation
◆ Blocking: MS run
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Motivating example: 
a case study of coronary artery disease
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● Collection of plasma samples of 3290 disease subjects and 
controls
◆ treated at the Munich Heart Center between 2005 and 2006
◆ collected at single time point at diagnosis
◆ recorded clinical characteristics

● Focus on 5 disease groups 
◆ STEMI, NSTEMI, unstable angina, stable angina, controls

● General goal: an initial quantitative LC-MS screening
◆ select a subset of plasma samples
◆ examine protein profiles
◆ a follow-up study will focus on a subset of proteins and disease 

groups

◆ Clough et al. Methods in Molecular Biology, 2011



Here is how a statistician views this experiment 9
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Here is how a statistician views this experiment
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Statistical inference: conclusions on 

Here is how a statistician would use the data
to perform the comparisons
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Observed Systematic Random deviation
feature = mean signal + due to all sources
intensity of disease group of variation

yij = Group meani + Errorj(i)
� N

�
0,�2

�

Var(D̂1 � D̂2) = 2
nb

ngnpns

�
⇥2
Indiv + ⇥2

Error

⇥
(13)

Reference:

Var(D̂1 � D̂2) = 2

⇤
⇥2
Indiv + 2⇥2

Error

I

⌅
(14)

Loop:

Var(D̂1 � D̂2) =
8

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(15)

if two disease groups are in a same block, and

Var(D̂1 � D̂3) =
12

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(16)

µ1k � µ2k (17)

3

Observed Systematic Random deviation
feature = mean signal + due to all sources
intensity of disease group of variation

yij = Group meani + Errorj(i)
� N

�
0,�2

�

Var(D̂1 � D̂2) = 2
nb

ngnpns

�
⇥2
Indiv + ⇥2

Error

⇥
(13)

Reference:

Var(D̂1 � D̂2) = 2

⇤
⇥2
Indiv + 2⇥2

Error

I

⌅
(14)

Loop:

Var(D̂1 � D̂2) =
8

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(15)

if two disease groups are in a same block, and

Var(D̂1 � D̂3) =
12

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(16)

µ1k � µ2k (17)
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Statistical inference: conclusions on 

Here is how a statistician would use the data
to perform the comparisons
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Ȳ·1·· � Ȳ·2·· (18)

3

Bias:

Observed Systematic Random deviation
feature = mean signal + due to all sources
intensity of disease group of variation

yij = Group meani + Errorj(i)
� N

�
0,�2

�

Var(D̂1 � D̂2) = 2
nb

ngnpns

�
⇥2
Indiv + ⇥2

Error

⇥
(13)

Reference:

Var(D̂1 � D̂2) = 2

⇤
⇥2
Indiv + 2⇥2

Error

I

⌅
(14)

Loop:

Var(D̂1 � D̂2) =
8

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(15)

if two disease groups are in a same block, and

Var(D̂1 � D̂3) =
12

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(16)

µ1k � µ2k (17)
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Potential dangers:

Bias and inefficiency can be prevented by 
3 fundamental principles of experimental 

design



Steps of statistical experimental design

● Define the problem
◆ Populations of interest
◆ Comparisons of interest
◆ Scope of conclusions

● Utilize 3 principles of experimental design
◆ Replication
◆ Randomization
◆ Blocking: known biological and technical variation
◆ Blocking: MS run

15



Fundamental principle 1: replication
16
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Required to (1) carry out the inference and (2) minimize the variance

Two levels of randomness imply two types of replication:
◆ Biological replicates: selecting multiple subjects from the population
◆ Technical replicates: multiple runs per subject 

Oberg and Vitek, J. Proteome Research, 8, 2009



Fundamental principle 1: replication
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Required to (1) carry out the inference and (2) minimize the variance

Oberg and Vitek, J. Proteome Research, 8, 2009

Coronary artery disease experiment:
◆ Biological replicates: 50 subjects per disease group from the population
◆ Technical replicates: no technical replication in this case



18Jointly analyzing multiple conditions effectively 
increases the number of replicates
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19Often can assume that the variation is same across groups
Does not need to be constant (e.g. function of intensity)
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Measurements from other group inform of 
the variation in the group of interest

Same when jointly analyzing all features of a protein
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Fundamental principle 2: randomization
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No randomization 
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= bias
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=  no bias

Required to prevent bias

Two levels of randomness imply two types of randomization:
◆ Biological replicates: random selection of subjects from the population
◆ Technical replicates: random allocation of samples to all processing steps  
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Fundamental principle 2: randomization
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Coronary artery disease experiment:
◆ Biological replicates: randomized selection from the repository
◆ Technical replicates: random order of samples  



Example: technical replication and randomization 
Hu, Coombes, Morris, Baggerly, Briefings in Functional Genomics, 2005
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distance metric based on the Pearson
correlation coefficient. Surprisingly, we
observed that simple clustering produced
six groups instead of five (see the top
panel of Figure 1). We investigated the
clinical information and it turned out that
the resulting six clusters matched the run
dates of the samples, rather than the
biologically different groups (see the
bottom panel of Figure 1). We found that
the serum samples from patients
diagnosed with one cancer subtype had
been run at least a month before all of the
rest, and that the run date affected all of
the sample spectra to some degree. We
were able to verify this by examining the
spectra from a material that is commonly
used for quality control (QC), which the
researchers had run concurrently. The
spectra from the QC material showed the
same clustering pattern as the biological
samples. We attempted to apply simple
additive shifts to align the QC samples to
fix the problem, but failed.

Comments
Proteomic profiles are not yet very
reproducible over time, and the intensities

are semiquantitative at best. To focus on
the biological contrasts between groups of
tissue samples, we recommend that
investigators include some members from
each contrasting sample in each
laboratory-run group. If the run groups
are large, simply randomising the run
order will achieve this. Running all
samples ‘as they come in’ is not yet a good
way to operate experiments in proteomic
mass spectrometry.

Case study 2: Collection
protocols
Another group of researchers conducted
an experiment at M. D. Anderson on
tissue samples from 50 patients with
cancer, which were believed to include
two subtypes of the disease. The
researchers applied three different
fractionation protocols (identified as
myo25, myo70 and bsa70) to produce
three different spectra per sample.
Splitting a sample into three fractions can
better highlight different subsets of the
proteins.
The disease subtype information was

‘stripped out’ and the resultant blinded

Run date effects can be
larger than biological
effects

Figure 1: Detection of
subtypes of cancer

324 & HENRY STEWART PUBLICATIONS 1473-9550. BRIEF INGS IN FUNCTIONAL GENOMICS AND PROTEOMICS . VOL 3. NO 4. 322–331. FEBRUARY 2005

Hu et al.

● Serum samples with five types of cancer
● SELDI-TOF MS
◆ normalized, peak picked

Hierarchical clustering of samples

Cancer subtype
confounded with 

time

Time of spectral acquisition

Same time-
based clustering 

on the QC 
samples!



Steps of statistical experimental design

● Define the problem
◆ Populations of interest
◆ Comparisons of interest
◆ Scope of conclusions

● Utilize 3 principles of experimental design
◆ Replication
◆ Randomization
◆ Blocking: known biological and technical variation
◆ Blocking: MS run

23
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Fundamental principle 3: blocking

Helps reduce both bias and variance

Complete randomization 
=  inflated variance

Block-randomization  
= restriction on randomization

= systematic allocation
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Figure 3: (a) Sequential acquisition creates a confounding e�ect: the di�erence in group means
can be due to both di�erences between groups and di�erences between days. (b) Complete ran-
domization removes the confounding e�ect. The variance within each group is now a combination
of the biological di�erence and of the day-to-day variation. (c) Paired design uses day as a block of
size 2. The design allows one to compare di�erences between individuals from two groups within a
block.

Observed Systematic Random deviation
feature = mean signal + due to all sources

intensity of disease group of variation

yij = Group meani + Errorj(i)
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�
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Figure 4: Statistical model for a completely randomized design with a single mass spectrum
replicate per patient. i indicates the index of a disease group, and j(i) the index of a patient within
the group. All Errorj(i) are assumed independent.
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Figure 5: Statistical model for a mixed e�ects analysis of variance (ANOVA). i is the index of
a disease group, j(i) the index of a patient within the group, k(ij) is the index of the sample
preparation within the patient, and l(ijk) is the replicate run. Indiv(Group)j(i), Prep(Indiv)k(ij)

and Errorl(ijk) are all independent.

40

Two levels of randomness imply two types of blocks:
◆ Biological replicates: subjects having similar characteristics (e.g. age)
◆ Technical replicates: samples processed together (e.g. in a same day)  



25
Fundamental principle 3: blocking

Complete randomization 
=  inflated variance

Block-randomization  
= restriction on randomization

= systematic allocation

yDd
3

yH

Healthy Disease

(a) Sequential acquisition

F
e

a
tu

re
 i
n

te
n

s
it
y

d
2

d
2

d
1

d
1

d
4

d
4

d
3

Healthy Disease

d
4

d
3

d
2

d
1

(c) Day = block

F
e

a
tu

re
 i
n

te
n

s
it
y

(b) Complete randomization

yH

yD

Healthy Disease

F
e

a
tu

re
 i
n

te
n

s
it
y

d
3

d
3

d
2

d
2

d
4

d
4

d
1

d
1

Figure 3: (a) Sequential acquisition creates a confounding e�ect: the di�erence in group means
can be due to both di�erences between groups and di�erences between days. (b) Complete ran-
domization removes the confounding e�ect. The variance within each group is now a combination
of the biological di�erence and of the day-to-day variation. (c) Paired design uses day as a block of
size 2. The design allows one to compare di�erences between individuals from two groups within a
block.
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Figure 4: Statistical model for a completely randomized design with a single mass spectrum
replicate per patient. i indicates the index of a disease group, and j(i) the index of a patient within
the group. All Errorj(i) are assumed independent.
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Figure 5: Statistical model for a mixed e�ects analysis of variance (ANOVA). i is the index of
a disease group, j(i) the index of a patient within the group, k(ij) is the index of the sample
preparation within the patient, and l(ijk) is the replicate run. Indiv(Group)j(i), Prep(Indiv)k(ij)

and Errorl(ijk) are all independent.
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Coronary artery disease experiment:
◆ Biological replicates: block-randomized sample selection 
◆ Technical replicates: no important blocking factors were anticipated  

Helps reduce both bias and variance



Blocking with respect to biological factors (= matching) 26

Block-randomization  
= restriction on randomization

= systematic allocation

Complete randomization 
=  inflated variance

Käll and Vitek, PLoS Computational Biology, 7, 2011

Time course experiments are also 
instances of blocking (subject=block)



27Case study: an illustration of block-randomized 
selection of subjects from the repository

Disease group
Control Stable angina Unstable angina NSTEMI STEMI

Stratification

� 58 y.o; Female 354 300 49 39 29
� 58 y.o; Male 701 843 143 86 54

< 58 y.o; Female 80 56 5 5 8
< 58 y.o; Male 264 190 34 23 27

Table 1: Number of serum samples from subjects with coronary artery disease and controls, available for
each combination of age group, gender and disease group.

Disease group
Control Stable angina Unstable angina NSTEMI STEMI

Stratification

� 58 y.o; Female 3 3 3 3 3
� 58 y.o; Male 3 3 3 3 3

< 58 y.o; Female 2 2 2 2 2
< 58 y.o; Male 2 2 2 2 2

Table 2: Number of serum samples selected for the proteomic experiment. Each disease group has the same
number of subjects for each combination of age group and gender.

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 3: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m identified proteins. m and m0

are fixed, and R, S, T , U and V are random. Only m and R are observed.

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# of proteins in the set s�K K s
# of proteins not in the set (m� s)� (R�K) R�K m� s

Total m�R R m

Table 4: Outcomes of the gene set enrichment analysis (GSEA) for one protein set. m is the total number of proteins
(also called the “universe”), and s is the total number of proteins in the pre-specified set. The Hypergeometric test
is conditional on the number of di�erentially abundant proteins R. It tests the null hypothesis that the number of
di�erentially abundant proteins in the set K is as expected by random chance, against the alternative hypothesis
that K is larger than as expected by random chance.
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that K is larger than as expected by random chance.
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Counts in the initial repository of samples

Counts of subjects included in the study



Example: blocking with respect to technical factors 
Hu, Coombes, Morris, Baggerly, Briefings in Functional Genomics, 2005

28

dataset was brought to our group for
analysis. The aim of the analysis was to
perform unsupervised clustering of the
data to see if the two subtypes could be
identified correctly and blindly. We
preprocessed the spectral data in a manner
similar to that described in the first case
study, including the methods of SPDBC
and normalisation to the total ion current.
We analysed the spectra within each of
the three fractions separately. After
aligning the peaks across the spectra
within each fraction and filtering out the
noise, we identified 172, 130 and 130
peaks, respectively, in the fractions from
the myo25, myo70 and bsa70 protocols.
We then performed hierarchical
clustering analyses in each of the three
fractions. The results seemed very
exciting, with two distinct clusters clearly
identified in each fraction. We also
observed that the myo25 and myo70
fractions produced the same two clusters,
and that clustering from the bsa70 fraction
was identical to the others, except for the
classification of a single sample. These
results were communicated and the data
were unblended; however, further
exploration showed that the split that we
had found did not match the subtypes
assumed by the investigators. Rather, the

split matched very closely with the day on
which the sample collection protocol had
been changed midway through the
experiment. Figure 2 illustrates the
clustering pattern within the fraction
bsa70.

Comments
Many features of an experiment affect
protein expression profiles, and we have
not yet been able to identify all of them.
We recommend that investigators define a
single protocol and follow it throughout
the experiment. This will reduce the
number of factors that are of concern
during the data analysis. If a protocol must
be altered, the investigator should make
sure that samples representing both sides
of the contrast of interest are present for
each run batch that the laboratory
processes, and should accordingly be
prepared to analyse the data in batches.

Case study 3: Calibration and
sample handling
A third group of researchers at M. D.
Anderson collected urine samples from
individuals for proteomic analysis in the
study of cancer. The study focused on five
categories of human subjects: disease-free
individuals, patients presenting with low-

Changes in collection
protocols can have large
effects

Figure 2: Discovery of
clusters in data from
bsa70 fraction of tumour
samples

& HENRY STEWART PUBLICATIONS 1473-9550. BRIEF INGS IN FUNCTIONAL GENOMICS AND PROTEOMICS . VOL 3. NO 4. 322–331. FEBRUARY 2005 32 5

The importance of experimental design in proteomic mass spectrometry experiments

● Serum samples with two types of cancer
● SELDI-TOF MS, 3 fractions
◆ normalized, peak picked

Hierarchical 
clustering of 

samples

Protocol change



Summary of the experimental design of the coronary 
artery disease case study

● Define the problem
◆ Populations: Munich Heart Center patients in 2005-2006
◆ Comparisons of interest: 5 well-defined disease groups
◆ Scope of conclusions: selected subjects (screening experiment)

● Utilize 3 principles of experimental design
◆ Replication: 50 subjects per group, no technical replicates
◆ Randomization & blocking
■ patients randomly selected from the population
■ matched by age and gender
■ random order of sample processing and spectral acquisition
■ label-free LC-MS

29

Alternative: block-randomized spectral acquisition 
(5 subjects, one from each group, in random order),  

..., 
(5 subjects, one from each group, in random order), 



Example in this tutorial
Differentially abundant proteins in a Dahl Salt sensitive rat model

● Define the problem
◆ Populations: Dahl salt sensitive rats
◆ Comparisons of interest: high vs low salt diet
◆ Scope of conclusions: selected subjects (screening experiment)

● Utilize 3 principles of experimental design
◆ Replication: 7 rats per group, 3 technical replicates
◆ Randomization & blocking
■ rats randomly selected from the population
■ rats randomly assigned to treatment
■ random order of sample processing and spectral acquisition
■ label-free SRM

30

Alternative: block-randomized spectral acquisition 
(2 rats, one from each group, in random order),  

..., 
(2 rats, one from each group, in random order), 



Steps of statistical experimental design

● Define the problem
◆ Populations of interest
◆ Comparisons of interest
◆ Scope of conclusions

● Utilize 3 principles of experimental design
◆ Replication
◆ Randomization
◆ Blocking: known biological and technical variation
◆ Blocking: MS run

31



Labeling (multiplexing) is also 
an instance of blocking

32

Multiplexing reduces both bias and variance
(assuming that extra sample handling does not introduce extra variation)

Synthetic 
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Example in this tutorial
Differentially abundant proteins in ovarian cancer patients

● Define the problem
◆ Populations: Patients at University Hospital Zürich with no 

previous history of disease
◆ Comparisons of interest: disease vs controls
◆ Scope of conclusions: selected subjects (screening experiment)

● Utilize 3 principles of experimental design
◆ Replication: 6 disease and 10 control patients, no technical reps
◆ Randomization & blocking
■ random order of sample processing and spectral acquisition
■ label-based SRM
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Alternative: block-randomized spectral acquisition 
(2 subjects, one from each group, in random order),  

..., 
(2 subjects, one from each group, in random order), 
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(a) Balanced Incomplete Block

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·

R XL1 XL1 XL1 XL1 XL1 · · ·
D1 XL2 · · ·
D2 XL2 · · ·
D3 XL2 · · ·
D4 XL2 · · ·
D5 XL2 · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·
D1 XL1 XL2 · · ·
D2 XL2 XL1 · · ·
D3 XL2 XL1 · · ·
D4 XL2 XL1 · · ·
D5 XL2 XL1 · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 · · ·
D1 XL1 XL2 XL1 XL2 · · ·
D2 XL2 XL1 XL2 XL1 · · ·
D3 XL1 XL2 XL1 XL2 · · ·
D4 XL2 XL1 XL2 XL1 · · ·
D5 XL1 XL2 XL1 XL2 · · ·

2

(b) Reference (c) Loop
Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·

R RL1 RL1 RL1 RL1 RL1 · · ·
D1 XL2 · · ·
D2 XL2 · · ·
D3 XL2 · · ·
D4 XL2 · · ·
D5 XL2 · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·
D1 XL1 XL2 · · ·
D2 XL2 XL1 · · ·
D3 XL2 XL1 · · ·
D4 XL2 XL1 · · ·
D5 XL2 XL1 · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 · · ·
D1 XL1 XL2 XL1 XL2 · · ·
D2 XL2 XL1 XL2 XL1 · · ·
D3 XL1 XL2 XL1 XL2 · · ·
D4 XL2 XL1 XL2 XL1 · · ·
D5 XL1 XL2 XL1 XL2 · · ·

2

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·

R XL1 XL1 XL1 XL1 XL1 · · ·
D1 XL2 · · ·
D2 XL2 · · ·
D3 XL2 · · ·
D4 XL2 · · ·
D5 XL2 · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·
D1 XL1 XL2 · · ·
D2 XL2 XL1 · · ·
D3 XL2 XL1 · · ·
D4 XL2 XL1 · · ·
D5 XL2 XL1 · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 · · ·
D1 XL1 XL2 XL1 XL2 · · ·
D2 XL2 XL1 XL2 XL1 · · ·
D3 XL1 XL2 XL1 XL2 · · ·
D4 XL2 XL1 XL2 XL1 · · ·
D5 XL1 XL2 XL1 XL2 · · ·

2

Figure 9: Five-group experiments with a two-label workflow; “X” indicates a unique biological
sample, “R” indicates a reference sample, and “L1” and “L2” indicate the (optional) systematic
labeling scheme. (a) Balanced incomplete block: individuals from each pair of groups appear in a
same block once. (b) Reference design: each block contains a reference sample which is the same in
all blocks, and one additional unique individual. (c) Loop design: pairs of individuals from di�erent
groups cycle through blocks.
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Figure 10: Variances V ar(D̂1 � D̂2) of a comparison between two disease groups in a 5-group
experiment. (a) 5-label workflow with a randomized complete block design in Eq. (4), and 4-
and 2-label workflows with a balanced incomplete block design in Eq. (5). (b) and (c) 2-label
workflow with a balanced incomplete block in Eq. (5), reference design in Eq. (6) and loop design
in Eq. (7)-Eq. (8).
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● Reference design
◆ allocate a same control subject 

in every run
◆ keep same channels across 

groups

● BIB and loop designs
◆ systematically rotate group 

allocation to runs
◆ randomize or systematically 

rotate channels across groups

How to allocate samples to runs?
Allocation of resources in a 2-label workflow > 2 groups

Calculate model-based variances of comparisons for each allocation 
to determine the best design given resource constraints
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Figure 6: The pilot label-free experiment of patients with diabetes. (a) Variance components
�2

Indiv, �2
Prep and �2

Error over all quantified features. Each box contains the middle 50% of the
features, the horizontal line within a box is the median, dots are the outliers. (b) V ar(ȳH � ȳD) of
a complete randomized design in Eq. (2). (c) V ar(ȳH � ȳD) for randomized block design in Eq. (3)
and completely randomized design in Eq. (4), with no technical replicates. “Large” �2

Block =
5(�2

Indiv + �2
Error), and “small” �2

Block = 0.5(�2
Indiv + �2

Error).

Observed Systematic Random deviation Random Random
feature = mean signal + due to block + deviation due to + deviation due to

intensity of disease group (e.g. plate or day) individual measurement error

yijkl = Group meani + Blockk + Indiv(Group)j(i) + Errorl(ijk)

⇥ N
�
0, �2

Block

⇥
⇥ N

�
0, �2

Indiv

⇥
⇥ N

�
0, �2

Error

⇥

Figure 7: Statistical model for a mixed ANOVA with random blocks. i is the index of a disease
group, j(i) the index of a patient within the group, k is the index of the block, and l(ijk) is the
replicate run. Blockk, Indiv(Group)j(i) and Errorl(ijk) are all independent.

(a) Randomized Complete Block (b) Balanced Incomplete Block

Disease Replicate set 1 Replicate set 2 · · ·
group Block 1 Block 2 · · ·
D1 X X · · ·
D2 X X · · ·
D3 X X · · ·
D4 X X · · ·
D5 X X · · ·

Disease Replicate set 1 Replicate set 2 · · ·
group Block 1 Block 2 · · ·
D1 X X · · ·
D2 X X · · ·
D3 X X · · ·
D4 X X · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·
D1 X X X X · · ·
D2 X X X X · · ·
D3 X X X X · · ·
D4 X X X X · · ·
D5 X X X X · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·

R X X X X X · · ·
D1 X · · ·
D2 X · · ·
D3 X · · ·
D4 X · · ·
D5 X · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·
D1 X X · · ·
D2 X X · · ·
D3 X X · · ·
D4 X X · · ·
D5 X X · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 · · ·
D1 X X X X · · ·
D2 X X X X · · ·
D3 X X X X · · ·
D4 X X X X · · ·
D5 X X X X · · ·

1

Statistical issues in LC-MS based biomarker discovery:
summary of discussion with Xiao-jun and suggestions.

September 7, 2008

Disease Replicate set 1 Replicate set 2 · · ·
group Block 1 Block 2 · · ·
D1 X X · · ·
D2 X X · · ·
D3 X X · · ·
D4 X X · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 Block 5 · · ·
D1 X X X X · · ·
D2 X X X X · · ·
D3 X X X X · · ·
D4 X X X X · · ·
D5 X X X X · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 · · ·

H X X X X · · ·
D1 X X X · · ·
D2 X X X · · ·
D3 X X X · · ·
D4 X X X · · ·

Disease Replicate set 1
group Block 1 Block 2 Block 3 Block 4 · · ·

H X X X X · · ·
D1 X · · ·
D2 X · · ·
D3 X · · ·
D4 X · · ·

1

Figure 8: Experiments with a four-label workflow; “X” indicates a unique biological sample. (a)
Randomized complete block design with four disease groups: each block contains one individual
from each disease group. (b) Balanced incomplete block design with four labels and five disease
groups: individuals from each pair of groups appear in the same block an equal number of times.
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How to allocate samples to runs?
Allocation of resources in a 4-label workflow

● 4 groups or less
◆ allocate a subject from each 

group to a run
◆ randomize or systematically 

rotate channels across groups

● 5 groups or more
◆ systematically rotate group 

allocation to runs
◆ randomize or systematically 

rotate channels across groups

Calculate model-based variances of comparisons for each allocation 
to determine the best design given resource constraints



Concluding thoughts

● Clearly define the problem before starting the experiment
◆ Do not change the comparisons of interest and the scope of 

conclusions after seeing the data 

● Experimental design is critical
◆ Randomization, replication and blocking
◆ Statistical analysis will not correct the faults of design

● Need a statistical model to finalize the design 
◆ Jointly analyzing all conditions & all features gains sensitivity
◆ Compare designs in terms of expected variation

● Involve a statistician in all steps of experiment planning! 
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