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Replication
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Objectives

* Relate experimental design methods to LC-MS experiments

* Assess the impact of variation on statistical analyses and
interpretations

» Build a conceptual foundation for the data processing and
statistical tools contained in MSstats



Agenda

» Translating research experiments into statistical models

* Elements of good statistical/experimental design
Replication

Randomization

Blocking

Variation

 Differential abundance tests: the t-test and the ANOVA

e Statistical Eovver: how manTy samples is enough and the problem with
blanket fold change cut-offs

Yesterday: Group Comparisons natively within Skyline



eneral analysis approaches for proteomics
experiments
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General analysis approaches for proteomics
experiments

¢ S-l-lbtgpety A |

ubtype
: 1 1 ’_| I_L| I_L| I Subtype B :
. | Omics Type |
( Quality Control )I EFRMNA-Seq |
| I Froteomics |
C Subgroup Discovery )I |
Clustering I ” i
( Co-clustering ): g I
1G] |
| |
( Multi-omic Clustering )l e |
I = I
! 3 45 1 1 2 2 '
'\ Sample Number I
I
Diagnosis Prognosis

( Diagnosis

Modeling ( Drug Response )

( Drug Toxicity

geze‘;xé“‘éif \_/

I

I

— |

) Marker Selection Predictive

I I I I Maodel Training Model :
I

I

|

|

Drug Drug
Response Toxicity

Network Compaosition
Gene Enrichment

]

Phospho :

Gene Sat :

—( Eorchment ) proome LI L1

Pathway & G‘ratnin-prowin Interactina : Correlation with Fhenotype |

| Network Modeling ! ” |
|

I

’ |

| |

b s

( Functional Rela.tionship) :

( State/Disease Speciﬁc) I
Interaction !

Ruggles 2017



Today's focus:
Class comparison, differential analysis

* Known class labels
« Compare group averages 0 o s
* Report p-values, posterior % 12 |
probabilities etc 3 . \
o
» Useful when compare 5 .- va ’_
groups of subjects 2 ’ 0
* Best used for basic biology o7

.+ Initial (Tier Ill) biomarker 3 3
discovery screen

Vitek



Statistical design of experiments:
From data collection, to analysis, to interpretation

(a) Random sample of individuals

Healthy individuals in study
® Y- observed mean

Healthy population
(all healthy individuals)

LT H- mean feature abundance

Oberg & Vitek 2008



Statistical design of experiments:
From data collection, to analysis, to interpretation

(a) Random sample of individuals

Healthy population
(all healthy individuals)

LT H- mean feature abundance

Healthy individuals in study
® Y- observed mean

(a) Random sample of individuals

Y

Disease population
(all disease individuals)

L7 p ~mean feature abundance

Disease individuals in study
e ¥p - observed mean

-~

(c) Inference (conclusions regarding Hp— Hy )

Oberg & Vitek 2008
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Statistical design of experiments:
From data collection, to analysis, to interpretation

(a) Random sample of individuals

Healthy population
(all healthy individuals)

Healthy individuals in study

® Hy, -mean feature abundance ® Y- observed mean A
(b) Statistical
(a) Random sample of individuals model
- e \q (properties of
isease population — —
(al dfseasﬁa%ivfduafs) Disease individuals in study 0= )
® U -mean feature abundance e Y- observed mean Y

(c) Inference (conclusions regarding Hp— Hy )

Oberg & Vitek 2008 12



Agenda

* Translating research experiments into statistical models

* Elements of good statistical/experimental design
* Replication
« Randomization
» Blocking
* Variation

 Differential abundance tests: the t-test and the ANOVA

e Statistical Eovver: how manTy samples is enough and the problem with
blanket fold change cut-offs

Earlier Today: Group Comparisons natively within Skyline



Take-Home Messages

*Replication is best when biological
Block what you can

*Randomize what you can't block
*Include all sources of variation in models



Randomization is easy for experiments, and less so for observational
studies

(a) Random sample of individuals
—

Healthy population
(all healthy individuals)

L7 H- mean feature abundance

Healthy individuals in study
® Y- observed mean

(a) Random sample of individuals

. — ﬁ
Disease population
(all disease individuals)

L7 D mean feature abundance

Disease individuals in study
® V- observed mean

Oberg & Vitek 2008 15



Fxample of randomization failure

.ﬂnmm mﬂﬂlﬁm mgﬂ}mmﬂﬁm

Proteomic profiles of 5 cancer types... expected 5
groups, but analysis suggests six... what
happened?

Hu 2005



Hu 2005

Fxample of randomization failure

Run order

.ﬂnﬂm mﬂ

17



Randomization addresses random-chance variance,
blocking helps address planned, systematic
variability

Example: blocking across time to control for variation due to instrument drift

Healthy (n=4)
Disease (n=4)

Oberg & Vitek 2008



Randomization addresses random-chance variance,
blocking helps address planned, systematic
variability

Example: blocking across time to control for variation due to instrument drift

(a) Sequential acquisition (b) Complete randomization (c) Day = block
P od, = od = o
@ | d4 @ t od. * Eé A o/ E d4
D (o] D O
S ‘_ E > J S
Q ¥ Q o O
S °% 0 3 od - S o 105
® o d, g 4 o a, YD S )
YH od
© d, o d, O/OI dj
i —> : —> | —>
Healthy  Disease Healthy  Disease Healthy  Disease

Oberg & Vitek 2008



The Problem of Confounding Biological Variation and Batch Effects

Bi ical
O
—
s|fSoo
g o 0@
[Ar]
]

Group: 2

Completely confounded study design

Hicks et al 2015

Processing Batch

Batch: 1

Batchs: ¥

Batch: 3

We canmot determine if
variation is driven by
hiology or batch effects

Proportion of detected genes

Observed Differences

Principal Componant 2

]
Q00 g
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o
o gHOo
O 00

o
o

Group 1l Group 2 Group 3

Principal Companant 1
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The Problem of Confounding Biological Variation and Batch Effects

. <]
-0 - 0= pa
—t] DD = m._m“_ .n_D m
<4 £ oo 5
<]«] = 3~ <] o
44 oog |8 -0~ 40g |E
<l 000 T 00 <04 E
_ﬂu_U o0 = <20 =
¢ wsauodwey ediaung T yubuadiuer) |edoully
m 1]
= M+ =
] a
] - [}
= (=8
=
e =] = i
£3ii “ : cri__ |3
Sasa 8 §i:: —— [
saual pajiagep o vogiodoly  5auad paiaalap jo uopuodosg
poog peg
& #
‘o, Pty FEE
t&. .u..ﬂu.a .."m_. ...,m...m... .P.u.ﬁ.m,;w-.rnﬂ..
RSN
— il inﬂsweﬁ..b .&.Mﬂ,..ux ._._m.....
| o T
400 H <abg
O
T yeg T oy2eq £ iymeg

. Today riday  roday  TodaEn rday 1oday
T dnous L oy £ dnoug
udisap Apnis paouejeg

21

Hicks et al 2015



The Problem of Confounding Biological Variation and Batch Effects

Observed Differences

Processing Batch
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Example of blocking failure

0.15
J

0.10
1

0.05
|

0.0
|

Proteomic profiles of 2 cancer types...
so this clustering checks out?

Protocol A

Protocol B .

Cancer types were perfectly

s34 —
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confounded with protocol used.
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The most basic experimental design:
Completely randomized design with one replicate

Disease | Replicate set 1
group
D X
Do X
D3 X
Dy X

 Advantages: easy to set up, simple analysis, flexible

* Disadvantages: must be able to randomize all
sources of variation (temporal or spacial)

24



Blocking designs that are balanced (all treatment
comparisons are made with equal precision)

(a) Randomized Complete Block

Disease | Replicate set 1 | Replicate set 2
group Block 1 Block 2
Dy X X
Do X X
D3 X X
Dy X X

« Advantages: includes blocking to
deal with heterogeneity between
experimental units,
straightforward statistical analysis

« Disadvantages: limited by block
size (number of experimental
units in each block must be the
same as the number of
treatments)

Oberg & Vitek 2008
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Blocking designs that are balanced (all treatment
comparisons are made with equal precision)

(b) Balanced Incomplete Block

(a) Randomized Complete Block

Replicate set 1
Block1l Block2 Block3 Block4 Block s

Disease | Replicate set 1 | Replicate set 2
group Block 1 Block 2
Dy X X
Do X X
D3 X X
Dy X X

x X X X

X X X X

X X X X

x X X X
x x X X

« Advantages: includes blocking to
deal with heterogeneity between
experimental units,
straightforward statistical analysis

« Disadvantages: limited by block
size (number of experimental
units in each block must be the
same as the number of
treatments)

Oberg & Vitek 2008

« Advantages: allows for smaller

blocks than the RCB, still a
balanced design

« Disadvantages: range of available

designs is limited (treatments
must all have equal replication,
and each pair of treatments must
occur together within a block
exactly the same number of times
over the whole experiment)

20



Fxample constructions for

Balanced Incomplete Block Designs
(a) Balanced Incomplete Block

Disease Replicate set 1
group Block 1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9 Block 10
D, XL, XL, XL, XL
Do XL, Xr, X, X1,
Ds XL, Xio XL, XL,
Dy XLz Xr 1 XLz Xt 1
Dy Xr, XL, XL, XL

Note: treatments must all have equal replication, and each pair of treatments must
occur together within a block the same number of times over the whole experiment

(b) Reference (c) Loop
Disease Replicate set 1 Disease Replicate set 1
group | Block1 Block2 Block3 Block4 Block 5 group | Block1 Block2 Block3 Block4 Block 5
R Rp, R, Rp, Rr, Ry, T D Xr, XL,
Dl XLg PR D X X
e 2 Lo L1
Do XL2 D X X
D3 XL2 - 3 Lo L1
Dy X Lo . D4 X Lo X L
Ds XLy e Ds XL, X1

Here, the reference sample is of no
scientific interest in the study, but adds
experimental noise to the data to
control the between-experiment
variation

Here, the aim (s to compare treatment
conditions and there (s no need for a
control because each treatment (s
compared directly with another

Oberg & Vitek 2008

2/



Thought exercise:
How should these eight samples be blocked?

Population Sample Blocks

HHHHHHH

Disease



Replication assesses variation due to random chance,
ensures reliability of conclusions

(a) No replication

= A
2
9
£
o
>
S ’D
L
YH
| | >

Healthy  Disease

Oberg & Vitek 2008



Feature intensity

Replication assesses variation due to random chance,
ensures reliability of conclusions

(a) No replication

>

Healthy  Disease

Oberg & Vitek 2008

Feature intensity

(b) A significant difference

A
S ¥
5 5 D
YH=g—
I .' >
Healthy  Disease

Feature intensity

(c) Not a significant difference

A o

o
o

o —_—
o YD

YH

O
O

O

% i >

Healthy  Disease



Replication assesses variation due to random chance,
ensures reliability of conclusions

Coming up:..
“How many replicates is enough?”

32



What are common sources of variation in proteomics? How
can they be avoided or at least accounted for?

| Phase C
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purification :
L]
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separation
' A
] v
v A
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1/ ‘ '

Phase A ' Phase B
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Protein formation
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Protein
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Bias: systematic errors in our conclusions
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e
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Van den Broek et al 2014



Agenda

* Translating research experiments into statistical models

* Elements of good statistical/experimental design
Replication

Randomization

Blocking

Variation

 Differential abundance tests: the t-test and the ANOVA

e Statistical Eovver: how manTy samples is enough and the problem with
blanket fold change cut-offs

Earlier Today: Group Comparisons natively within Skyline



Differential abundance

tes

oy the two-sample t-

-

Expression samples, n = 5

Control

 sdleea

Treatment

observed t =

estimate of variation

R L SRS A I

-4 <2 0 2 4

dif ference of group means Y, —Y,

S 3R T 3B

-4 =2 0 2 4

Expression

36



Multiple two-sample t-test for more
complex experimental designs

Expenmental design

Treatment A Two-sample
_/\ t-tests
17 x g E
Control 4 A/C
’,/ \\ J
17 x E 1IN | B/A
Treatment B dB- B/C
17 x @»E _,_.ﬁ,.._/._...:_\ﬂ.. !
o

8 910111213

https://www.nature.com/articles/nmeth.2974

38



Multiple two-sample t-test for more
complex experimental designs

Expenmental design Sample means
Treatment A Two-sample A C B
_/\ t-tests Q" T
17 x g E Z +
o
Q— !
Control N A/C b4 } _ :
17 x g 7 TN { B/A g’ '
Treatment B dn — X AL ’
B Bjc 0.18 0.009
17 x @"E A : S :
&~ 8 910 111213 P=0.27

https://www.nature.com/articles/nmeth.2974



Multiple two-sample t-test for more
complex experimental designs

But these error bars overlap?

Experimental design Sample means Differences in means
Treatment A Two-sample A C B P
t-tests @ : 5 1.57
17 x @ g /\ & { ? g
o c - ‘
o (e} il
Control A/C ] . } ; : % 5 { [
17 x »@ o T | B/A 9 t 1o O
] < | o . 1 Z _nel
Treatment B dn ; ¥ : v
B B/C 0.18 0.009 C BIC BA
17 x é*g I 7 : P 0.18 0.009 0.15
¥ 8 910111213 P=0.27 d 0.47 0.95 0.50

https://www.nature.com/articles/nmeth.2974 40



Absence (or presence) of error bar overlap does not always mean
statistical significance

Error bar width and interpretation of
spacing depends on the error bar

Sample mean type

0 1.0 P

s.d.t ° 4 . 0.0003
Scaled error bars, b - i
Unequal p-values & &ML ¢ 9 ‘; " | 0.17
95% Cl ——%—— _ 0.005

Sample mean
0 1.0 20 p

Unscaled error bars, | 5 =, - 0.05
Equal p-values i

JE : 0.05

L  _ - 005

https://www.nature.com/articles/nmeth.2659 A1



One-way ANOVA as an alternative to
_mu\tip e two-sample t-tests

Recall multiple two-sample t-test approach
Expenmental design ' Sample means = Differences in means
Treatment A Two-sample A C B _
g ,@ -/\ t-tests § 1.5 T 2 1.5
S 1.0 S 1.0
Control A/C 2105 % 0.5
17 x E e | B/A £10.0 1 ;» 0
] < 95 ' 205
TreatmentB  dg— B/IC W‘m’ AIC BIC BI/A
17 x Q*E ] ] I Bt P 0.18 0.009 0.15
@ 8 910111213 P=0.27 d 047 0.95 0.50

https.//www.nature.com/articles/nmeth.2974



One-way ANOVA as an alternative to
_multip e two-sample t-tests

Recall multiple two-sample t-test approach
Experimental design ' Sample means = Differences in means
Treatment A Two-sample A C B
s _/\ t-tests @ 11.5 : 5 15
B § 11.0 { € 1.0 '
Control A/C ® 105 1 { : : % 0.51"
17x & N Jg g0 ! 5 O
9.5 : < -05
TreatmentB  dg— B/IC WW A/IC BIC BI/A
17 x %*ﬁ I | o R e P 0.18 0.009 0.15
& 8 910 111213 P=0.27 d 0.47 095 0.50
— One-way ANOVA approach
Samples

7 8 9 10 11 12 13
Response

https://www.nature.com/articles/nmeth.3005



One-way ANOVA as an alternative to
_multip e two-sample t-tests

Recall multiple two-sample t-test approach
Experimental design ' Sample means = Differences in means
Treatment A Two-sample A C B -
/\ t-tests o 11.5 y 1.5
] ()]
" s -8 S 1.0 { € 1.0
Control A/C 2105 { : _ % 0514
17x & N BA  £100 ? o O
954 : < -05
TreatmentB  dg— B/IC WW A/IC BI/IC BIA
17 x %*E | | = i? P 0.18 0.009 0.15
& 8 910111213 P=0.27 d 0.47 0.95 0.50
— One-way ANOVA approach
Samples Partitioned variance
A —e— Between : _:‘— - SSg=124
; e group MSg=6.2
5 : il Sl
O 000 @ - SSw=30.2
- MSw=2.0
C —e—  Within
b group ———"
7 8 9 1011 1213 7 8 910111213
Response Response

https://www.nature.com/articles/nmeth.3005



One-way ANOVA as an alternative to
_multip e two-sample t-tests

Recall multiple two-sample t-test approach
Experimental design Sample means Differences in means
Treatment A Two-sample A C B
s -/\ t-tests g 11.5 : 2 18
-8 S 11.0 { € 1.0
Control A/C G 10.5 { { : = % 0.5
17x & A BA 2100 ? g O
954 : < -05
TreatmentB  dg— B/IC WW A/IC BI/IC BIA
17 x %*E | | = i? P 0.18 0.009 0.15
& 8 910 111213 P=0.27 d 0.47 095 0.50
— One-way ANOVA approach
Samples Partitioned variance Comparison of means
F=3.1,P=0.08, n2=0.29
A +—e—i Between : —:‘ - SSg=124 , 9
50 a group | | MSg=62 @12 f) 4
T 8 11 l 8 2
B —e——i =t :
O 000 - SSw=30.2 §1g @ %O { '
~ MSw=2.0 o ] )
o2 . gr'éulg i A B C A/B BI/C AIC
VST MY PO (TPASEY SR SR I'I'I'I'l"l'l ,7 .24 . . .
7 8 9 10 11 1213 7 8 910111213 pieled Ry WERORNGNS
Response Response 0.070

https://www.nature.com/articles/nmeth.3005
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ANOVA approaches are powerful because they include

known sources of variation

Basic ANOVA, completely randomized design

Observed
feature =
intensity

Yij =

Mixed effects ANOVA, with technical replicates

Observed
feature =
intensity

Yijkl =

Observed
feature =

intensity

Yijkl =

Oberg & Vitek 2008

+  Indiv(Group),;
~ N (O'-' a?ndiv

Mixed effects ANOVA, with blocking

+

Random
+ deviation due to
individual

Random

deviation due to

sample preparation

Prep(Indiv) iy )
~ N (0,0%,.p)

Random
+ deviation due to
individual

+  Indiv(Group);
~ N (0, U?ndivs

_|_

_|_

_|_

+

Random deviation

due to all sources
of variation

Error i
~ N (0,0%)

Random
deviation due to
measurement error

Erroryijx)
~ N (0,7

Random
deviation due to
measurement error

Errory(ijr)
~ N (0.7 0)

46



Agenda

* Translating research experiments into statistical models

* Elements of good statistical/experimental design
Replication

Randomization

Blocking

Variation

 Differential abundance tests: the t-test and the ANOVA

e Statistical Fower: how marf?/ samples is enough and the problem with
blanket fold change cut-ofts

Earlier Today: Group Comparisons natively within Skyline



Statistical significance is only part of the
data science story

30-

* o oD o BB e

o downregy!ated upregulated

2 proteins proteins
IS) _

o 02

R
X5
Q S
L4
(- 10-
T

(@)}
LS,

' How sensitive does the

0 experiment need to be?

How many replicates are
available?

48



Power analysis informs how many replicates is
‘enough” and how sensitive the experiment is

(a)

---= 1 sample prep, 1 tech. repl.
-=-=- 1 sample prep, 3 tech. repl.
—— 3 sample prep, 3 tech. repl.

50
1

40
1

Number of individuals per group
30
1

Fold chanae

Biological replicates are more
statistically useful than
technical replicates

Oberg & Vitek 2008

49



Power analysis informs how many replicates is
‘enough” and how sensitive the experiment is

(@ )

4 2 4
8 -=-= 1 sample prep, 1 tech. repl. 2 ) -= Large Gayq: randomized design
-~ 1 sample prep, 3 tech. repl. \ ----o Small cgm: randomized design
a — 3 sample prep, 3 tech. repl. a ' —— Randomized block design
g ¥ :
(=] o
a & 8-
£ %1 g
= =
5 b=
_— g —
5 S g
: ;
= 3
= =
(=3 (=]
T )
14 1.2 13 14 15 1.1 1.2 13 14 1.5
Fold chanae Fold change

Biological replicates are more
statistically useful than
technical replicates

Block to minimize
between-block variance

Oberg & Vitek 2008
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Power analysis informs how many replicates is
‘enough” and how sensitive the experiment is

(a)

21 ---= 1 sample prep, 1 tech. repl.
-- 1 sample prep, 3 tech. repl.

a —— 3 sample prep, 3 tech. repl.
g %1
om
a
2 8
=]
z
=
=
-é S
k]
E e
=

o

T
14 1.2 13 14 15

Fold chanae

Biological replicates are more
statistically useful than
technical replicates

Oberg & Vitek 2008

Number of individuals per group

150
1

100
1

(b)

-= Large Gayq: randomized design
-+ Small cgm: randomized design
—— Randomized block design

)
1.4 1.2 13 14 1.5
Fold change

Block to minimize
between-block variance

Number of individuals per group

150
1

100
L

50
1

(c)

-~ FDR: mg/(mg+my)=0.99
-~ FDR: mp/(mp+mq)=0.5
—— Single feature

1
14 12 1.3 1.4 1.5
Fold change

Fewer targets is better
than more

51



Biospecimen Sample

| | Example of power analysis: |
biospecimen cohort size in proteomics-based biomarker
discovery and verification studies

100 candidates passing

Lower STATISTICAL POWER Higher

# controls/# cases

ij 25— 50 100 250

Signal (A SD) 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0
%‘7 ]ﬁ{: 23.3% 34.1% 412% 49.2% | 27.7% 39.0% 56.5% 63.6% | 32.7% 55.6% 74.7% 83.1% | 46.6% 79.3 94.8% 98.5%
©

= 20 33.5% 53.9% 67.7% 76.2% | 43.0% 725% 85.6% 92.8% | 582% 89.8% 97.9% 99.6% | 82.3% 99.2% 100% 100%
o

o

‘S

-§ 30%\ 459% 71.9% 858% 91.0% | 57.8% 89.2% 97.2% 99.3% | 785% 98.6% 100% 100% | 97.1% 100% 100% 100%
a

§ 50%\ 69.2% 94.3% 99.1% 100% | 87.6% 99.6% 100% 100% | 97.9% 100% 100% 100% | 100% 100% 100% 100%
4]

o

x 80% \90.7% 100% 100% 100% | 99.5% 100% 100% 100% | 100% 100% 100% 100% | 100% 100% 100% 100%

Skates et al 2013
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Example of power analysis:
yeast proteome response to perturbation examined
by DIA-MS

1.00 =
0.75 -
Legend
. 3 replicat
()
2 .
a — 5 replicat
c
o 050 - )
z =/ replicat
IS
n —t replicates
15 replicates
0.25 -
ooo - '

| | | | |
1.0 1.5 2.0 2.5 3.0

Desired fold change sensitivity



or more information...

Journal of

reviews p rOteOme

eresearch

Statistical Design of Quantitative Mass Spectrometry-Based
Proteomic Experiments
Ann L. Oberg' and Olga Vitek**
Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic,
200 First Street SW, Rochester, Minnesota 55905, and Department of Statistics and Department of Computer

Science, Purdue University, 250 North University Street, West Lafayette, Indiana 47907

Received November 21, 2008

Statistics for Biologists

Collection home | Statistics in biology | Practical guides [NESINEEISIEQNI=LENN Other resources

Since September 2013 Nature Methods has been publishing a monthly column on statistics called
"Points of Significance." This column is intended to provide reseachers in biology with a basic
introduction to core statistical concepts and methods, including experimental design. Although
targeted at biologists, the articles are useful guides for researchers in other disciplines as well. A

continuously updated list of these articles is provided below.

STATISTICAL METHODS
IN BIOLOGY

Design and Analysis of Experiments
and Regression

S. J. Welham, S. A. Gezan,
S. J. Clark and A. Mead

(a€) CRC Pres
)

A CHAFMAN & MALL 300k
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Agenda

* Translating research experiments into statistical models

* Elements of good statistical/experimental design
Replication

Randomization

Blocking

Variation

 Differential abundance tests: the t-test and the ANOVA

e Statistical Eovver: how manTy samples is enough and the problem with
blanket fold change cut-offs

Earlier Today: Group Comparisons natively within Skyline



Example 1: plasma proteomics in healthy vs
salt-sensitive rat

YO N « What statistical analysis is
Q e mMost appropriate?
s * How to block the sample

7 Healthy 7 Disease preparation?
3 technical
replicates



Example 2: effect of genotype + treatment
on cellular aging

S5 » What statistical analysis is
' ‘ most appropriate?
» How to block the sample

5 genotypes 5 treatments preparation?

5 biological
replicates
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Example 3: tissue-specific proteomics atlas

* What statistical analysis is
most appropriate?

» How to block the sample
preparation?

@ ViBeog

30 subjects

8 tissues ;\7



