

# A Skyline Tool for Creating Robust Large Scale Targeted MS/MS Assays

Philip M. Remes<sup>1</sup>, Cristina Jacob<sup>1</sup>, Lilian Heil<sup>2</sup>, Nick Shulman<sup>2</sup>, Michael J. MacCoss<sup>2</sup> June 4, 2023 <sup>1</sup>Thermo Fisher Scientific, San Jose CA <sup>2</sup>University of Washington, Department of Genome Sciences, WA

The world leader in serving science



### **Data Independent Analysis vs Targeted MS2**

Data Independent Analysis (DIA)

Maximized Ease of Use, High Coverage

Compromised Sensitivity / Selectivity

# **Targeted MS2**

Maximized Sensitivity / Selectivity

Limited Number of Compounds / Hard to Setup & Maintain

Hardware and Processing Improvements

Advancing at Slower Rate



\_┎┎╸

## **Targeted MS2 Yields Highest Quality Spectra**

Overlapping Precursors Compete for Space in Multipoles, Can Also Cause Signal Processing Issues



# **Targeted MS2 Sometimes Has Better Coverage than DIA**

#### 2x Dilution Example



DIA: 1,359 Peptides Correct Ratio +/- 25% Targeted: 1,414 Peptides Correct Ratio +/- 25%

Lilian Heil, et. al. ASMS 2022

# New, Bead-Based Protocol: Suitable for High-Throughput Target MS2 Assay?

#### **Christine Wu Poster Tues 589**

Mag-Net: Bead based capture of membrane particles from plasma enables liquid biopsy measurements for >4,500 proteins



Bead-Based Plasma Prep Gas-Phase Fractions, LIT Analyzer

#### DIA is the Current Technique of Choice for Such a Sample, But Let's Try Targeted MS2

Results are from 6x Gas-Phase Fractions, Using LIT with 1 Th Isolation Width, Peptide Searching with SEQUEST + Inferys

### Why is Targeted MS2 Not Used at Large Scale?

#### Challenge

**Fiddly and Manual Processes** 

Selecting High Quality Targets / Transitions

Limited Coverage

**Peak Integration** 

**Drifting Retention Times** 

## Why is Targeted MS2 Not Used at Large Scale?

| Challenge                                    | Solutions                                                        |
|----------------------------------------------|------------------------------------------------------------------|
| Fiddly and Manual Processes                  | Automation                                                       |
| Selecting High Quality Targets / Transitions | Chromatogram Library, Automated Filters,<br>[Possible Dilutions] |
| Limited Coverage                             | RT Alignment, [Faster Instruments,<br>Brighter Source]           |
| Peak Integration                             | RT Alignment, Library Spectral<br>Comparison, mProphet           |
| Drifting Retention Times                     | RT Alignment                                                     |

## Why is Targeted MS2 Not Used at Large Scale?

| Challenge                                    | Solutions                                                        |
|----------------------------------------------|------------------------------------------------------------------|
| Fiddly and Manual Processes                  | Automation                                                       |
| Selecting High Quality Targets / Transitions | Chromatogram Library, Automated Filters,<br>[Possible Dilutions] |
| Limited Coverage                             | <b>RT Alignment</b> , [Faster Instruments,<br>Brighter Source]   |
| Peak Integration                             | <b>RT Alignment</b> , Library Spectral<br>Comparison, mProphet   |
| Drifting Retention Times                     | RT Alignment                                                     |

#### More About RT Alignment at the End!

# We've Made a Skyline External Tool

To Enable Large-Scale Targeted Experiments

- 1. To Eliminate (or at Least Drastically Reduce)
  - Manual Editing of Spreadsheets
  - Manual Review of Selected LC Peaks
- 2. Implement New Features
  - Automated Transition Selection
  - Precursor Load Balancing
- 3. Share Our Advances While Maintaining Control of a Few Proprietary Algorithms



#### Home 🗸

tools

#### **External Tools for Skyline**

To learn more about creating External Tools of your own and making them easy to install and share with others, please consult the resources on the Skyline **Documentation** page.

To submit an External Tool to the Skyline Tool Store, click here.



DALL-E A shiny, golden hammer with its head embedded in a rock, like Excalibur. It is illuminated by a brilliant sun.

# **Overview of High Throughput (>1k) Targeted Workflow**



# **Step 1: Acquire Chromatogram Library**



00:08:25

Cancel Import

Hide

# **Step 2: Refine Results with Additional Targeted Injections**



~6.7k Precursors ~54k Transitions

#### **Start the External Tool**

#### 💁 Skyline-daily - survey\_30min.sky



x

#### Document Grid: PRM Builder: Precursor Refine

| Repo | orts • 📝 • 📓 • 🕅 | ( (   1 c                       | of 198625   🕨 🔰 | 🗙 🗎 🖹 Export.       | Actions - Fine | d:          | Aa           |                   |                   |      |            |                  |                    |      |                               |                    |                    |                       |
|------|------------------|---------------------------------|-----------------|---------------------|----------------|-------------|--------------|-------------------|-------------------|------|------------|------------------|--------------------|------|-------------------------------|--------------------|--------------------|-----------------------|
|      | File Name        | Peptide<br>Modified<br>Sequence | Precursor Mz    | Precursor<br>Charge | Protein        | Product Mz  | Fragment Ion | Product<br>Charge | Retention<br>Time | Area | Background | Raw Times        | Raw<br>Intensities | Fwhm | Library Ion<br>Mobility Value | Protein<br>Locator | Peptide<br>Locator | Transition<br>Locator |
| •    | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 1216.483367 | y11          | 1                 | 10.52             | 529  | 0          | 10.26,10.3,10.34 | 48,76,358,0,0,99   | 0.09 | #N/A                          | MoleculeGroup:/    | Molecule:/splO1    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 1115.435688 | y10          | 1                 | 10.52             | 1319 | 0          | 10.26,10.3,10.34 | 66,0,0,0,0,0,287,  | 0.05 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 968.367274  | у9           | 1                 | 10.52             | 4367 | 3          | 10.26,10.3,10.34 | 0,0,0,0,0,335,94   | 0.06 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 881.335246  | y8           | 1                 | 10.52             | 1452 | 1          | 10.26,10.3,10.34 | 51,0,156,0,0,112   | 0.07 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 794.303218  | у7           | 1                 | 10.52             | 1741 | 0          | 10.26,10.3,10.34 | 0,0,0,0,0,116,40   | 0.06 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 680.26029   | у6           | 1                 | 10.65             | 1597 | 1825       | 10.26,10.3,10.34 | 403,350,505,57,    | 0.23 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 520.229642  | y5           | 1                 | 10.52             | 1426 | 2          | 10.26,10.3,10.34 | 98,138,0,181,53,   | 0.1  | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 449.192528  | y4           | 1                 | 10.57             | 590  | 939        | 10.26,10.3,10.34 | 82,212,0,0,94,0,   | 0.06 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 232.140415  | у2           | 1                 | 10.52             | 2019 | 0          | 10.26,10.3,10.34 | 0.0.0,0.0,0,411,0  | 0.04 | #N/A                          | MoleculeGroup:/    | Molecule:/splO1    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 608.745321  | y11          | 2                 | 10.48             | 1525 | 2004       | 10.26,10.3,10.34 | 3039,1264,0,128    | 0.08 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 397.655247  | у7           | 2                 | 10.48             | 1341 | 1          | 10.26,10.3,10.34 | 28,0,0,0,0,134,1   | 0.1  | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 260.618459  | y5           | 2                 | 10.65             | 2349 | 1          | 10.26,10.3,10.34 | 0.0.0,93,0,65,20   | 0.18 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 332.145226  | b3           | 1                 | 10.65             | 1855 | 0          | 10.26,10.3,10.34 | 0,124,0,64,0,0,1   | 0.17 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 566.245669  | b5           | 1                 | 10.65             | 1684 | 0          | 10.26,10.3,10.34 | 302,269,308,127    | 0.18 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |
|      | 220520_ES906     | ETTFSSNC[+57]                   | 723.790457      | 2                   | sp 014639 ABL  | 283.626472  | b5           | 2                 | 10.65             | 3980 | 735        | 10.26,10.3,10.34 | 92,150,0,0,46,15   | 0.07 | #N/A                          | MoleculeGroup:/    | Molecule:/sp 01    | Transition:/sp 01     |

# **Refine the Chromatogram Library**

|                   | Ϋ́                                  |  |  |  |  |
|-------------------|-------------------------------------|--|--|--|--|
| r                 | <ul> <li>Refine Targets</li> </ul>  |  |  |  |  |
|                   | Skyline PRMBuilder_Refiner_PRM_Bu   |  |  |  |  |
|                   | Report File ilder_Precursor_Refine  |  |  |  |  |
|                   | Reload Report                       |  |  |  |  |
| <b>F</b> :14 a.v. | TMT Modifications Present? No       |  |  |  |  |
| Filter            | Min Signal/Backgnd. 3.0             |  |  |  |  |
| Transitions       | Min Rel. Area 0.10                  |  |  |  |  |
|                   | Min Time Corr. 0.80                 |  |  |  |  |
|                   | Min/Max Width (s) 4.0 - 20.0        |  |  |  |  |
|                   | Min/Max RT (min) 4.0 -36.2          |  |  |  |  |
| L                 | Min Good Trans. 3 Keep All Precs.   |  |  |  |  |
| ſ                 | Define Method                       |  |  |  |  |
|                   | Analyzer Vontrap V                  |  |  |  |  |
|                   | Scan Rate (kDa/s) 125 v             |  |  |  |  |
|                   | Min Dwell (msec) 5.00               |  |  |  |  |
|                   | MS3                                 |  |  |  |  |
| Set Method        | ✓ Optimize Scan Range               |  |  |  |  |
|                   | LC Depty Width (c) 0.55             |  |  |  |  |
| Parameters        | Min Pts per Peak 6                  |  |  |  |  |
|                   | Cycle Time (s) 161                  |  |  |  |  |
|                   | Acq. Window (min) 0.75              |  |  |  |  |
|                   | Max Peps. / Prot. 1000              |  |  |  |  |
|                   | Protein Priority                    |  |  |  |  |
|                   | File                                |  |  |  |  |
| ſ                 | Create Method                       |  |  |  |  |
|                   | Balance Load ✓ 1 Charge/Prec.       |  |  |  |  |
| Export            | Base Name quality_check             |  |  |  |  |
|                   | Method                              |  |  |  |  |
| wethoa            | Template                            |  |  |  |  |
|                   | Skyline Connection Connected        |  |  |  |  |
|                   | Send To Skyline Create Method Files |  |  |  |  |
| 14                |                                     |  |  |  |  |

Searle et. al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry | Nature Communications

### **Using Tool to Update Skyline Document**



## **Step 2: Refine Results with Additional Targeted Injections**



### **Checking the Precursor Quantitative Precision**

Particularly if there are Many Precursors, We Can Filter Out the Ones with Poor Precision



# Situation: Library Filtered, CV Filtered



# **Advanced Filtering: Using Dilution Curve**

#### For Example, Dilute Human in Chicken Plasma

#### One Could Accept Peptides with Correct Ratio at 50% Dilution



One Could Additionally Optimize Transitions Using Dilution Curve LOQ Results

#### Nick Shulman Poster Tues 552

Optimizing lower limits of quantification and detection by choosing transitions in Skyline

# **Step 3: Design Assay**

#### **Account for Finite Instrument Speed**











#### **Ranked Best to Worst Score** Pep3, Pep2, ProtA ProtA Pep2, Pep3, Pep4, **ProtB ProtB ProtB** Pep2, ProtC Pep2, ProtD







We Take the Peptide2 Instead



Instrument Time

Add Peptides Until No More Fit



### **Optimization 2: Scan Range Minimization**

#### Example: LIT Scan Rate 0.008 ms/Th

28



### **Optimization 2: Scan Range Minimization**

|                 | Define Method                                      |                         |                     |
|-----------------|----------------------------------------------------|-------------------------|---------------------|
|                 | Analyzer Vontrap V                                 |                         |                     |
|                 | Scan Rate (kDa/s) 125 v                            |                         |                     |
|                 | Min Dwell (msec) 5.00                              |                         |                     |
|                 | □ MS3                                              |                         |                     |
|                 | Optimize Scan Range                                |                         |                     |
|                 | Scan Range 200.0 - 1500.0                          |                         |                     |
|                 | LC Peak Width (s) 12.00                            |                         | Instrument Needs    |
|                 | Min. Pts. per Peak 7                               |                         | $\sim 1500$ msec to |
|                 | Cycle Time (s) 1.71                                |                         | 4000 111300 10      |
|                 | Acq. Window (min) 0.75                             |                         | Complete a Cycle    |
|                 | Max Peps. / Prot. 1000                             |                         | with Default Range  |
|                 | Protein Priority<br>File                           |                         | $m/z 200_1500$      |
| Minimum Instrum | ent Time for 1 Refined List of 2420 Precursors, 10 | 78 of 1279 Proteins     | 111/2 200-1000      |
| 5000            |                                                    |                         |                     |
| 4500            |                                                    |                         | Based on LC Peak    |
| 4000            |                                                    |                         | Width and Pts-per-  |
| 3500            |                                                    |                         | Peak. Cvcle is 1710 |
| 3000            |                                                    |                         | maaa                |
|                 |                                                    | - Refined: 4156 Targets | Insec               |
| E 2500          |                                                    | - Assav 1: 2420 Targets |                     |
| 원 2000          |                                                    | - User Cycle Time       | Assav has           |
|                 |                                                    |                         |                     |

2.4k of 4.1k Peptides, 1.0k of 1.2 Proteins

29 Proprietary & Confidential | philip.remes@thermofisher.com | 4-June-2023

20 Separation Time (min)

AL 194.111

2500

. 왕 2000 1500

1000

500

0

0

### **Optimization 2: Scan Range Minimization**



Proprietary & Confidential | philip.remes@thermofisher.com | 4-June-2023 30

5000

4500

4000

3500 (j) స్త 3000

g 2500

응 2000

1500

1000

500

0

# **Effect of Acquisition Segment Width**



## **Narrower Acquisition Segment Width Increases Throughput**



## **Narrower Acquisition Widths Improves Peak Picking**

Generally, is Very Good, Due to Narrow Acquisition Windows

Consistent Peak Picking Between Replicates



### **Fraction of Questionable Peaks is ~1% with Larger Data Sets**



### **Real-Time Alignment: Overview**

Acquisition Windows 2-3x Narrower Than Traditional Targeted MS2  $\rightarrow$  2-3x More Targets

Replicate 1

Replicate 2





















## **Real-Time Alignment with Uncertainty Bounds**

Cyan Line Denotes Full Width Half Maximum of Cross Correlation



# **Alignment Acquisitions Are Inserted Into Methods**

#### **Gas-Phase Fractions**



# **Alignment Acquisitions Are Inserted Into Methods**

#### Subsequent Targeted Methods



Alignment Acquisitions
 Typically Performed at
 ~3 Points per LC Peak,
 i.e. Not Every Cycle

47 Proprietary & Confidential | philip.remes@thermofisher.com | 4-June-2023

# Automated Alignment Between Survey Runs and Creation of Reference File



#### Automated Alignment Between Survey Runs and Creation of Reference File



# Large Scale Targeted Assays (5-7k Peptides/Hour) are Practical

Skyline Provides Excellent Platform and External Tools to Enable New Features



# Thank You!

#### **Coauthors / Collaborators**

#### **Cristina Jacob**



#### Lilian Heil

#### **Nick Shulman**

#### Mike MacCoss



