Adaptation of Skyline to Analyze Untargeted Metabolomics Data Collected on GCMS Instrument

Pawel Sadowski, PhD

Laboratory Manager, CARF Proteomics Laboratory

Skyline User Meeting June 02, 2019

CARF Proteomics Laboratory

- Central Analytical Research Facility (CARF) is a multi-user multi-laboratory facility with instrumentation ranging from next generation sequencing, microscopy, vibrational spectroscopy, X-ray diffraction through mass spectrometry (elements and isotopes, proteomics, lipidomics)
- Clients: internal (QUT) and external researchers, industry
- CARF Proteomics Laboratory:
 - SWATH-MS based quantitative proteomics (use Skyline)
 - Targeted LCMS (use Skyline)
 - Targeted and untargeted GCMS (pesticides, metabolites, PAHs, TPHs, PCBs)

QUT a university for the real world

Metabolomics

• LCMS

• GCMS

• NMR

- High sensitivity High resolution
- Well-established
 Reproducible
 Sufficient sensitivity
 Good resolution
 Comprehensive databases
- Noninvasive Saving samples High specificity and resolution

- Unstable metabolites Limited databases
- Complex sample processing

Complex data analysis Limited dynamic range and sensitivity Expensive hardware

• Other

GCMS-based metabolomics

Mass spectrometer

Derivatisation

Lowers boiling point extending the range of compounds amenable to GCMS analysis

*

Beta-Alanine

GCMS data

Workflow

Randomization!

Data acquisition

Batch set up includes:

- PBQC
- Procedural blank
- QC sample
- RT standard
- Samples (possibly injected different concentrations)
- Sweep runs

Data processing and analysis

- Peak detection/integration (extraction of chromatographic features)
- Peak deconvolution
- RT alignment
- Extraction of most abundant ions per chromatographic peak
- Compound identification
- Quality assessment
- Normalization
- Clustering and differential analysis

Our intention was to have one universal tool and one set of rules applied across different 'omics'

CARF Proteomics Laboratory

Building transition list in Skyline

Can be combined with compound identification.

Building transition list in Skyline

Re-formatting .csv file into Skyline readable format and removing unwanted ions. Precursor m/z is made up and set higher than m/z range used during data acquisition.

		Molecule name		Product ions time		Retention time				
ļ		Δ	R	C	Γ	F	F	G	н	
I	1	RT:5.078	73	158	59	89	130	203	5.078	
ĺ	2	RT:5.305	73	147	57	77	174	151	5.305	
2	3	RT:5.370	73	117	147	131	75	102	5.37	
I	4	RT:5.470	207	73	152	208	209	295	5.47	
	5	RT:5.828	207	73	57	72	55	69	5.828	
I	6	RT:5.912	73	117	147	191	148	75	5.912	
	7	RT:5.983	147	75	73	100	190	148	5.983	
	8	RT:6.218	73	75	173	147	117	131	6.218	
	9	RT:6.425	73	117	89	75	118	74	6.425	
	10	RT:6.500	72	76	75	55	59	74	6.5	
	11	RT:6.618	73	157	75	103	69	207	6.618	
	12	RT:6.773	116	73	147	117	74	75	6.773	
	13	RT:7.075	73	116	258	75	147	89	7.075	
	14	RT:7.165	102	73	147	55	97	83	7.165	
	15	RT:7.288	55	83	97	154	82	124	7.288	
	16	RT:7.350	73	147	130	174	188	75	7.35	
	17	RT:7.520	147	73	133	59	148	86	7.52	
	18	RT:7.832	174	73	86	142	59	175	7.832	
	19	RT:7.920	147	73	148	57	117	75	7.92	
	20	RT:8.092	147	281	73	282	148	283	8.092	
l	21	DT.0 257	70	72	20	116	75	250	0 257	

		Precursor m/z	Precursor charge	Product m/z	Product charge	Retention time	Retention time window	
	А	В	С	D	E	F	G	
1	RT:5.078	1000	1	73	1	5.078	0.1	
2	RT:5.078	1000	1	158	1	5.078	0.1	
3	RT:5.078	1000	1	59	1	5.078	0.1	
4	RT:5.078	1000	1	89	1	5.078	0.1	
5	RT:5.078	1000	1	130	1	5.078	0.1	
6	RT:5.078	1000	1	203	1	5.078	0.1	
1								
8	RT:5.305	1001	1	X 73	1	5.305	0.1	
9	RT:5.305	1001	1	X 147	1	5.305	0.1	
10	RT:5.305	1001	1	57	1	5.305	0.1	
11	RT:5.305	1001	1	77	1	5.305	0.1	
12	RT:5.305	1001	1	174	1	5.305	0.1	
13	RT:5.305	1001	1	151	1	5.305	0.1	
14								
15	RT:5.370	1002	1	73	1	5.37	0.1	
16	RT:5.370	1002	1	117	1	5.37	0.1	
17	RT:5.370	1002	1	X 147	1	5.37	0.1	
18	RT:5.370	1002	1	131	1	5.37	0.1	

Building transition list in Skyline

Edit > Insert > Transition list > Import .csv file

CRICOS No.00213J

Importing GCMS data

Import settings

MS1 fi	Itering	Library ins	trument	rui-scai			
Isotop	pe peaks	included:	Precurs	sor mass a	nalyzer:		
Count ~			QIT ~				
Peak	S:		Resolut	tion:			
1			0.7		m/z		
MS/M	S filtering	had	Product		have		
Acquisition method:			Product mass analyzer:				
DIA		~	QIT		~		
Isolation scheme:			Resolution:				
	ns	\sim	0.7		m/z		

OK

Importing GCMS data

CRICOS No.00213J

Importing GCMS data

Missing data points (.raw)

QUT a university for the real world

Deconvolution

Retention Time

CRICOS No.00213J

Remove non-specific high background ions

QUT a university for the real world

Remove compounds present in procedural blank

QUT a university for the real world

CARF Proteomics Laboratory

PROCEDURAL BLANK

Remove compounds present in procedural blank

QUT a university for the real world

CARF Proteomics Laboratory

PROCEDURAL BLANK

Normalisation

13C Valine and 13C sorbitol

Final refined document has ions extracted for 108 chromatographic features.

Volcano plot

Each point represents a compound (chromatographic feature)

CARF Proteomics Laboratory

Q value = BH-adjusted p-value

QUT a university for the real world

Volcano plot

Each point represents a compound (chromatographic feature)

CARF Proteomics Laboratory

CRICOS No.002

Q value = BH-adjusted p-value

QUT a university for the real world

PCA plot

Each point represents a sample (an animal)

Day -11
 Day 1.5
 Day 2.5
 Day 3.5
 Day 0
 Day 2
 Day 3
 Day 9

CARF Proteomics Laboratory

CRICOS No.0021

Summary

- Established pipeline for processing metabolomics data in Skyline that is applicable to any GCMS data
- GCMS-based metabolomics data is among the most challenging to analyze
- The pipeline includes:
 - evaluation of instrument performance prior and during sample acquisition (PBQC)
 - targeted extraction of GCMS data including manual deconvolution and interference removal
 - quantitative assessment of 150-250 chromatographic features and their statistical analysis
- The pipeline has not yet been optimized for analysis of large datasets over the period of multiple days where significant RT shift or intensity differences may occur because it does not include RT alignment and correction based on PBQC.
- Work in progress (reduce manual steps, test different ways of processing i.e. using individual ions rather than sum of the ions).
- Skyline allows to standardize workflows across different 'omics'

Acknowledgments

- Mr Joel Herring
- Dr Nana Satake
- Dr Tommaso Villa
- Mrs Silvia Gemme
- Prof. Tony Clarke

- Melbourne node of Metabolomics Australia
- Skyline Team

ADVERTISEMENT

Skyline workshop at CARF 9-13 September, 2019

Location: Brisbane, Australia Trainers: B MacLean, E Borràs, C Chiva, B Searle, M MacCoss

Program: Mostly focused on SWATH-MS data analysis but will include small molecule component with GCMS data analysis.

RICOS No.00213J

a university for the real world