

DIA Acquisition and Data Analysis on Ion Trapping Mass Spectrometers:

How we perform quantitative analyses using DIA in our Lab

MacCoss Lab

Mass Spectrometry Data Acquisition Strategies Used in Proteomics

Database Searching

Mass Spectrometry Data Acquisition Strategies Used in Proteomics

Database Searching

Parallel Reaction Monitoring (PRM)

Targeted Analysis

Mass Spectrometry Data Acquisition Strategies Used in Proteomics

Targeted Chromatogram Extraction VLENTFEIGSDSIFDK++ (790.4 *m/z*)

Extraction of Fragment Ions from DIA Data

DIA Data Acquisition

Quantification via MS2 is much more accurate than MS1

The Promise of DIA

- Acquire a "molecular image" or "digital archive" of the sample
 - Mine it over and over
 - No scheduling
- Direct queries (and p-values) for peptides of interest
- Better quantitation than DDA

PRM: High Fidelity; Targeted

Needs for Quantitative Proteomics

- Are we really <u>identifying</u> peptides? Focus on detectable peptides and quantifiable peptides
- Good selectivity
- We want as good or better peptide detections than DDA
- No missing data across many runs

Detecting Peptides from DIA Data

Peptide-centric analysis

Which peptides are detected in our data?

Ting et al, MCP, 2015

Conclusion: Harry
Potter was not
identified, so the library
does not have it.

Conclusion: Harry
Potter was detected, the
library has it

PECAN: Peptide Detection <u>Directly</u> from DIA Data

DIA is all about balance (and sacrifice)

Archive Quality

20 x **20** *m/z*-wide windows

 $30 \times 10 \, m/z$ -wide windows

2 injections of 40 x 5 *m/z*-wide windows

Problem: Detection of Peptides in DIA Data is Inversely Proportional to Isolation Width

Needs for Quantitative Proteomics

- Are we really identifying peptides? Focus on detectable peptides and quantifiable peptides
- Good selectivity
- We want as good or better peptide detections than DDA
- No missing data across many runs

Improving Precursor Selectivity

Improving Precursor Selectivity

20 *m/z* DIA

GVMNAVNNVNNVIAAAFVK

m/z DIA + Overlap GVMNAVNNVNNVIAAAFVK

m/z DIA + Overlap + Demultiplexing GVMNAVNNVNNVIAAAFVK

$10 \, m/z \, DIA$

GVMNAVNNVNNVIAAAFVK

No reason not to do overlap windows

http://proteowizard.sourceforge.net/

Needs for Quantitative Proteomics

- Are we really identifying peptides? Focus on detectable peptides and quantifiable peptides
- Good selectivity
- We want as good or better peptide detections than DDA
- No missing data across many runs

Peptide Detections: Typical DIA library search workflow

Typical DIA library search

Peptide Detections: Implemented State of the Art in Skyline

Peptide Detections: Typical DIA library search workflow

Typical DIA library search

Peptide Detections: EncyclopeDIA workflow

The Promise of DIA

Precursor Sampling in DIA is Low Res

Spectrum Library Approach

DIA is a powerful tool for detecting peptides in HeLa

Retention Time Fit · Data Used In Fit · Data Removed From Fit

Separating Detection from Quantitation

24 m/z overlapping 12 m/z effective

4 m/z overlapping 2 m/z effective

Chromatogram libraries are significantly more powerful than spectrum libraries

Advantages of On-Column Chromatogram Library

- If you can't detect a peptide with a narrow precursor window then you will never detect it with a wide-window.
- On-column RT calibration overcomes selectivity limitations of poor precursor isolation in DIA
- Simplifies workflow. No need to perform extensive fractionation to generate sample specific library data. Just 4-6 runs with narrow windows
- Reduces multiple testing. Only look for peptides you know are in the sample in the wide window data.

Don't Query for Lots Peptides Not in Your Sample!

Conclusions

- We have the ability to perform DIA with selectivity of 50% the precursor isolation window size across the entire m/z range.
- Dynamic range and sensitivity that approximates PRM but is comprehensive
- Tools that can handle peptide detection without libraries
- Using gas phase fractionation to build on-column DIA chromatogram libraries.
- We focus on quantitative figures of merit instead of binary presence and absence.
- We need to be putting all of our assays on the same scale so that our quantitative data are commutable between labs, platforms, etc...