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WHY STATISTICS?

« Variation and unce

lechnical variation: samp

rtainty are unavoidable

ing handling, storage, processing

Instrumental variation: elution time, 1Ion suppression

Signal processing: peak boundaries, identity, intensity

Biological variation: variation in protein abundance

» Overall goal: effective, reproducible research

Experimental design: unbiased and efficient experiments

Data analysis: objective conclusions in presence of uncertainty

Statistical tools: re-analysis, peer review, reproducibility

"Statistics: a body of methods for making wise decisions in
the face of uncertainzty. "(W. A. Wallis)



WHY STATISTICS!
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biotechnology

nature.com » journal home » archive » issue » opinion and comment » correspondence » full text

NATURE BIOTECHNOLOGY | OPINION AND COMMENT | CORRESPONDENCE <y o

Sequencing technology does not eliminate
biological variability

Kasper D Hansen, Zhijin Wu, Rafael A Irizarry & Jeffrey T Leek

Affiliations | Corresponding authors

Nature Biotechnology 29, 572-573 (2011) | doi:10.1038/nbt.1910
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Experimental design
Replication, randomization, blocking

Basic data analysis
Simple summaries and models

VWords of caution
Instability, multiplicrty, reproducible research




STATISTICAL GOAL

Discover proteins or sub

* No known class labels

* E.g, no healthy’ or 'disease’
- All variation treated equally
* No error rates

+ Can't find something
meaningful If unsure
what we look for

* Best used for visualization
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Gehlenborg et al, Nature Methods, 2010



STATISTICAL GOAL 2: CLASS COMPARISON

Compare mean abundances in subject groups

* Known class labels
14
» Compare group averagles g .
- Report p-values, posterior 3 12 -
Cpe C |
probabilities etc 3 |
g 10 N
* Useful when compare 5 v
: Y= 1 ,.
oroups of subjects 2 o .
» Best used for basic biology o

» Initial (Tier Ill) biomarker * %
discovery screen




DIFFERENTIALLY ABUNDANT PROTEINS

- NOT ALWAYS BIOMARKERS
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BIOMARK
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STATISTICAL GOAL 3: CLASS

PREDICTION

Classity each subject into a known group

* Known class labels
 Predict individual subjects

* Report misclassification
error (sensrtivity, specificity,
predictive value etc)

« Useful when focus on an
individual

 Tier | orTlierll biomarker
discovery studies
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A STATISTICIAN'S VIEW OF THE EXPERIMENT

(a) Random sample of (b) Noisy measurements
/%dividuam — \‘

Healthy individuals
in the study

Healthy population

Healthy individuals
(i.e. all healthy individuals)

in the study

(a) Random sample of

S naividuale—, (8 Nolsy messuroments

Disease population
(i.e. all disease individuals)

Disease individuals
in the study

Disease individuals
in the study

Large populations of Randomly selected Noisy measurements
individuals individuals on selected
individuals
Dangers:

Bias: conclusions systematically differ from truth
Inefficiency: unnecessary variation in the data




DEFINITION OF BIAS AN

D IN

-FRICIENCY

Subject selection Spectral gacquisition

Healthy population Healthy subjects

U abundance in

(1 mean abundance _
subject k

in population

T

Subect selection Spectral acquisition

Disease population Disease subjects

abundance in
Hak subject k

(o mean abundance

|
|
|
|
|
|
:
in population :
|
|

T

‘\ -

Statistical inference: conclusions on 1 — U2

Spectra

observed peak
Y, ) "
Intensities

Spectra

Y911 observed peak
intensities

A

Statistical model:
properties of
Yi.— Y.

Bias: Yi.-Y,. systematically different from W1k — U2k

Inefficiency: Large Var(Yi.—Yo,.)
|2




DEFINITION OF BIAS AND INEFFICIENCY

Subject selection Spectral gacquisition

T

|
|
|
| Healthy subjects

Can be prevented by 3
principles of experimental

Healthy population

M1

design

Statistical inference: conclusions on [t1 — [i2

Bias: 57.1.. — 17.2.. systematically different from 1k — U2k

Inefficiency: Large Var(Yi.—Yo,.)
13




PRINCIPLE | REPLICATION

(1) carries out the inference and (2) minimizes inefficiencies

* * 8 (a) No replication 8 (b) A significant difference 8 (c) Not a significant difference
- c - o
1 1 o @ 4 S 4
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Two levels of randomness imply two types of replication:
Biological replicates: selecting multiple subjects from the population

Technical replicates: multiple runs per subject

Oberg and Vitek, J. Proteome Research, 8, 2009
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PRINCIPLE 2: RAN

Prevents

(a) Sequential acquisition

DOMIZATION

N1aSs

(b) Complete randomization

— ©
a d
b o o 3 °
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Healthy  Disease Healthy  Disease
No randomization Complete randomization
= confounding = no bias

= bias

Two levels of randomness imply two types of randomization:

Biological replicates: random selection of subjects from the population

Technical replicates: random allocation of samples to all processing steps

Oberg and Vitek, J. Proteome Research, 8, 2009




- XAMPLE: LACK OF RANDOMIZATION

Hu, Coombes, Morris, Baggerly, Briefings in Functional Genomics, 2005

® Serum samples with five types of cancer
e SELDI-TOF MS
¢ normalized, peak picked

Hierarchical clustering of samples

e R 2 3 B K BE & E

ikl

Cancer subtype
confounded with
time \

Same time-
based clustering
on the QC

samples!

Day
n:EHI!!I!EEE
T ¥ T T T 1




BEWARE OF BIG EFFECTS
THEY LIKELY REFLECT FLAWS OF THE DESIGN

+ Study of gene expression between Asians and Europeans

- Found that /8% of genes are differentially

* Asians were profiles in one year, and Europeans in another

 The difference therefore likely reflects a batch effect

nature

genetics

-ournal home > Archive > Letter >~ Full Text

+ Journal home Nature Genetics 39, 226 - 221 (2007) j().JHla]S AppStore

Advance online Fublishaed online: 7 January 2007 | doi:10.1038/ng1955

PR Scation Common genetic variants account for differences in gene
* CUITAE Satie expression among ethnic groups Thisissue
V@ Archive Richard S Spie man<, Laurel A BastoneZ, Joshua T Burdick2, Michael Morley2, B Tasle of contents
, Focuses and Warren J Ewens? & Vivian G Chaungl+2 ¢ Previous article

Sunplemeants

Source: a blog by Jeff Leek, Biostatistics, John Hopkins

Universit
http://simplystatistics.org/20 [ 6/02/0 | /a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/



http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/

BEWARE OF BIG EFFECTS
THEY LIKELY REFLECT FLAWS OF THE DESIGN

» Study of gene expression between Asians and Europeans

— - - — o~ s -—

"To call In the statistician after the experiment is done may be no
' more than asking him to perform a post-mortem examination:
he may be able to say what the experiment died of’

— Ronald Fisher

¥ Journail nome NLUre Cenel'Cs 39, £« - £21 (£UUY) I T L L

. Fublishaed online: 7 January 2007 | doi:10.1038/ng1955
Advance online

publication Common genetic variants account for differences in gene —
» Current issue expression among ethnic groups S ssue
2 Archive Richard S Spie man?, Laurel A BastoneZ, Joshua T Burdick2, Michael Morley=, i ‘Fatle of conents
, Focuses and Warren ) Ewens? & Vivian G Chaungi3:2 ¢ Previous article

Sunoplemants

Source: a blog by Jeff Leek, Biostatistics, John Hopkins

University
http://simplystatistics.org/2016/02/0 | /a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/



http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/

PRINCIPLE 3: BLOCKING

Helps reduce both bias and inefficiency
(b) Complete randomization (c) Day = block
~ N
O A © d4 D A S
&) &) d
& O dg & o/ 4
S o d 2
8 Od ° 7 .8 o/oi d3
c | 4 o dy ’D © %
) y ) / !
> d 3
o Y4 O,
% o dy % o/ ¢d1
o S
— | —> = | —
Healthy  Disease Healthy  Disease
Complete randomization Block-randomization
= 1nflated variance = restriction on randomization

= systematic allocation

Two levels of randomness 1imply two types of blocks:
Biological replicates: subjects having similar characteristics (e.g. age)

Technical replicates: samples processed together (e.g. in a same day)

Oberg and Vitek, J. Proteome Research, 8, 2009



=EXAMPLE: LACK OF

Hu, Coombes, Morris, Baggerly, Briefings in

® Serum samples with two types of cancer
e SELDI-TOF MS, 3 fractions
¢+ normalized, peak picked

BLOCKING

-unctional Genomics, 2005

Hierarchical
clustering of
samples

0.15
J

10
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s34 —

0.05
|
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Protocol change
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s08
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MATCHING

Blocking with respect to biological risk factors

P4 p ¥
Pl e L R 4
Rl

‘*’T*rmﬂ’ ~ b ‘*’T@M |
b b~ Fkgpleog”
XU

Diseqse

It -
Complete randomization Block-randomization

= 1nflated variance = restriction on randomization
= systematic allocation

Kall and Vitek, PLoS Computational Biology, 7, 2011
21



Block-randomized se

- XAMPI

ection of subjects from repository

Disease group

Control Stable angina  Unstable angina NSTEMI STEMI
> 58 y.o0; Female 354 300 49 39 29
: : > 58 y.0; Male 701 843 143 86 54
Stratification | “ye’ 0. Female 80 56 5 5 8
< 58 y.0; Male 264 190 34 23 27
Counts in the initial repository of samples
Disease group
Control Stable angina  Unstable angina NSTEMI STEMI
> 58 y.o; Female 3 3 3 3 3
: : > 58 y.o; Male 3 3 3 3 3
Stratification < 58 y.o; Female 2 2 2 2 2
< 58 y.0; Male 2 2 2 2 2

Counts of subjects included in the study

Mass spectra acquired without technical replication

22
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COMPARE DESIGNS

In terms of bias and (in)-efficiency

Subject selection Spectral gacquisition

T

Healthy population Healthy subjects Spectra

U abundance in

(1 mean abundance _
subject k

Y. observed peak
in population '

intensities

Subect selection Spectral acquisition

Disease population Disease subjects Spectra

abundance in
Hak subject k

Y911 observed peak
intensities

(o mean abundance

|
|
|
|
|
|
:
in population :
|
|

‘\ -

Statistical inference: conclusions on 1 — U2

A

Statistical model:
properties of
Yi.— Y.

Y.1..— Y. systematically different from 1k — 42k

Bias:

Inefficiency: Large Var(Yi.—Yo,.)

24




TWO-SAMPLE T-TEST

Simple example: label-free experiment, one feature/protein

FoldChange =
o "typical’ value in group 1

~
l

N
|

; "typical’” value in group 2

o
|

©
|

o— s log>(FoldChange) =

o o = logo("typical’ value in group 1)
' ® / . / .
—log>("typical’ value in group 2)

o
|

Log(feature abundance)

e V1. — Y5> = estimates log-fold change Conclusion:

1 1 1 1 On log scale, estimates of
— Yi; — — Yo, = — logo X1, — — logr Xo; = . .
ni ; T no ; T ; T no ; ! FC are ratios of geometric

N 1 (H 1 means

nq no le) 1

J
logo (H le) — logo (H X2j> = logo I
j j (H] ij)
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TWO-5AM

Simple example: label-free ex

PLE T-TEST

beriment, one feature/protein

N

N

o

o

(o))

Log(feature abundance)

Sample means

» In each group

HO: ‘status quo’, no change in abundance, [t1 — 2= 0

Ha: change in abundance, [l1 — 42 # 0

difference of group means

observed t = - S
estimate of variation

T~ Number of
1 _ replicates
= S0 R
=1 Sample variance

26



TWO-SAMPLE T-TEST

Simple example: label-free experiment, one feature/protein

—~
b 4| B
1 1 S ?
@\“ @\ﬂ - 27 \
I ,1 3 |
j'%’at)/ "TZTI‘“"“)/ % 10 - 0
O o P's
MS1 MS1 Hq\) [ @
= = N~— f —
M S
a8 — ;;’Es:é?gj‘_’;__.-‘_ \l

HO: ‘status quo’, no change in abundance, [t1 — 2= 0
Ha: change in abundance, [l1 — 42 # 0

difference of group means Yi. = Yo
observed t = - — =
estimate of variation @ + @
9 1 & = \9
81 = — 1(Y1i — Yl )
1=

27

Properties of the
means

st
n1
Variance of the
sampling
distribution of first
mean

s1
ny
Standard error
of the first

mean




ASSUMPTION: NORMAL DISTRIBUTION
The Central Limit Theorem

Population distribution
Normal Skewed Uniform Irregular

ALL_L;.HL

Samplmg distribution of sample mean

Probability
distribution
of the data

Repeatedly
selecting n
data points
and
calculating
means

Conclusion:
AS n increases, the mean iIs less
variable and more Normal

Krzywinski and Altman, Points of Significance,Collection, Nature Methods



Frequency

-FFECT OF SAMPLE SIZE

As n Increases, the estimates stabilize

18- °
u ° °, _ 'X1 © X2 o X3

o o .. Sample mean (X)

16- oL e o o0o®®
o ® o ® o%° e ..00.3.0 0,°%00
| . o0 0‘ . 0900 0089 oggoooo oe® .20.3 O..... 0000 ¢2%

® 5, 0 O 60 00° 0 e 00,0 89700 5058, ge00®ote 008y .

=ty —o wO-—g—0 .o ) .-.‘T u

144 o ol 0 90040 .......0.0. ° 00000000000000000032

[ ] o ° ° .....0
[ J ® (]
o 30 0%, ° %o %°
124 ® o e
g o o
Probabili ty o® o° Sample standard deviation (s)

distribution 10 .
Of th e da ta | L ...o 00" 9% %00n %00, %%
595965, 008.58.8‘9000

8 - 8..0 ° .....................2..

43575990088938 300000000 so csue eesoeE U

1 10 20 30 40 50 60 70 80 90 100
Sample size (n)

Simulated example
Krzywinski and Altman, Poinis of Significance Collection, Nature Methods



FINDING DIFFERENTIALLY ABUNDANT PROTEINS

False positive rate

> ?

—_
N
|

-
N
|

log (feature abundance)
® o
| |

o
|

HO: ‘status quo’, no change in abundance, 41 — W2= 0 Distribution of the a = False
Ha: change in abundance, 41 — [42 0 score if HO is true ~ Positive Rate

difference of group means

observed t =

estimate of variation a/2 a/2

no diTSrene® Student distribution expected t
I |

N /
Reject HO

30



FINDING

DIFFERENTIALLY ABUN

P-value

—_
N
|

-
N
|

log (feature abundance)
® o
| |

o
|

> ?

DANT PROTEINS

HO: ‘status quo’, no change in abundance, L1 — U2= 0
Ha: change in abundance, 11 — 42 # 0

observed t =

difference of group means

estimate of variation

no difference

~ Student distribution

Distribution of the
score if HO is true

p/2

-observed t

expected t

p = p-value

p/2

observed t

31




ALTERNATIVE TO TESTING: CONFIDENCE INTERVALS

Not all error bars are made equal

3 Population distribution b 1001 . o
501 s.e.m. HeH
30{ 95%Cl e
< 201 8-
I o ¢ 10] ¢
Sample means with 95% Cl D 9 — ¢ —i
! — ! %_ 8 ——e——
‘. s
° . % 7 - ’ '
. o | . SR '
—e ‘
® | ' 5- .
i ® . 4 1 .
== 3-
® 4 :
g [ B L
P— 0 O 20

Error bar size

A 95% CI: if we repeatedly collect data and
draw confidence intervals, then 95% of them
will contain the true mean

Cl are wider than bars indicating
standard error of the mean!

Y, ¥ s? 52 — - o2 o2 . .
(Yi. = Ya) —too\/3- + 22, (Y1 = Ya) +tajoy/ o5 + 2 ] Width of the intervals depends
on the sample size

Simulated example
Krzywinski and Altman, Points of Significance Collection, Nature Methods



~RROR

Absence of over

BARS

PROVID

DIFF

-R

-NT INSIGHT

ap does not always mean stat. significance

a Sample mean b Sample mean
(!)....1;0.. p c!)....to....z'.op
s.d. —— __ 00003 5 - 0.05
s.e.m.: . - 0.17 0.05
95% CI . - 0.005 0.05
Sample mean P Sample mean
0 1.0 0 1.0
n=10 L ———— e
R 0.1
— . 0.05
—— e 0.005
— e 0.001

s.e.m. error bars

Simulated example
Krzywinski and Altman, Points of Significance Collection, Nature Methods

95% CI error bars



STATISTICAL POWER

Probability to detect a difference when it exists

H a = False Positive Rate,
0 Type | error
Specificity Correct inference
0.95 A\D-05 Specificity, 1 — a
o _ o 0 Power, sensitivity, 3
A 1. — Yo
Vsi/n1+ s3/n2

Incorrect inference
Type | error, «
Type Il error, 1 -3

Adapted from Krzywinski and Altman, Points of Significance Collection, Nature Methods



STATISTICAL POWER

Probability to detect a difference when it exists

H a = False Positive Rate,
0 Type | error

Specificity Correct inference

Specificity, 1 — «
Power, sensitivity, 3

Incorrect inference
Type | error, «
Type Il error, 1 -3

Y1 — Ya.

t —
Vs1/n1+ s3/no

Adapted from Krzywinski and Altman, Points of Significance Collection, Nature Methods



HOW 1O GAIN POWER!

Worse choice: increase lype | error

Specificity
0.88v

Y1 — Ya.

t —
Vs1/n1+ s3/no

a trades off the sensitivity and the specificity of the test

Adapted from Krzywinski and Altman, Pojnts of Significance Collection, Nature Methods



HOW 1O GAIN POWER!

Better choice: increase signal/noise

Ho
Specificity Correct inference
0.95 Specificity, 1 — a
Power, sensitivity, 5
A .
Incorrect inference
Type | error, o
Type Il error, 1 -3
o V1. — Yo
V/s3/n1 + s5/n2

sample size Increases
statistical power

Adapted from Krzywinski and Altman, Points of Significance Collection, Nature Methods



OUTLIN

Translate scientific question into statistics
Statistical terms for ‘biomarker’ (or ‘signature’)

Experimental design
Replication, randomization, blocking

Basic data analysis
Simple summaries and models

VWords of caution
Instability, multiplicrty, reproducible research

38




AMERICAN STATISTICAL ASSOCIATION (ASA) STATEMENT
ON STATISTICAL SIGNIFICANCE AND P-VALUES

'he American Statistician, February 2016

* P-values can indicate how iIncompatible the data
are with a specified statistical model

» P-values do not measure the probability that the
studied hypothesis Is true, or the probability that
the data were produced by random chance

» Sclentific conclusions and business policy decisions
should not be based only on whether a p-value
passes a specific threshold

39



AMERICAN STATISTICAL ASSOCIATION (ASA) STATEMENT
ON STATISTICAL SIGNIFICANCE AND P-VALUES

'he American Statistician, February 2016

* Proper inference requires full reporting and
transparency

» A p-value, or statistical significance, does not

measure the size of an effect or the importance
of a result

» By rtself, a p-value does not provide a good
measure of evidence regarding a model or a
hypothesis

40



WITH SMALL SAMPLE SIZE, P-VALUES ARE UNSTABLE

Population A/

0 05

* Repeatedly sampling data leads to different results
* The problem worsens when testing many proteins
* Partial solutions:

* lLarger sample size
*  Adjustment for multiple testing

Simulation 1 Simulation 2 Simulation 3 Simulation 4
Estimated
effect size  1.46 (P = 0.005) —0.08 (P =0.82) 0.08 (P = 0.85) 0.74 (P = 0.09)
3
o
o ® o
=) —_— °
g 3. ':‘ [ ° —
0 - oo —g.:— _— e %
. : v $
o
_2 oo
A B A B A B A B

Simulated example
Halsey, Curran-Everett, VVolwer and Drummond, Nature Methods, 2015



WITH SMALL SAMPLE SIZE, P-VALUES ARE UNSTABLE

Popuaton;///\\ Population

B

Repeatedly sampling data leads to different results
The problem worsens when testing many proteins

Partial solutions:

* lLarger sample size

0 0.5 : . .
*  Adjustment for multiple testing
- 598 839 948 1,000
6 53 186 1,000 S | Sample Sample
Sample - amplée . :
size: 10 size: 30 size: 64 size: 100
Theoretical Theoretical Theoretical Theoretical

power: 18%

ol

61

0.0001

0.001 0.01 0.05
log,, P

. power: 48%

245 469

et

power: 80%

1,000 316 604 819

power: 94%

1,000

1 i

1.0 0.0001 0.001 0.01 0.05

log,, P

[

1.0 0.0001 0.001 0.01 0.05
log,, P

1.0

l

] Ml

0.0001

0.001

0.01 0.05
log,, P

1.0

Simulated example
Halsey, Curran-Everett, VVolwer and Drummond, Nature Methods, 2015




WITH SMALL SAMPLE SIZE, CONCLUSIONS ARE BIASED

Population A \ Population B
|0 replicates

Estimated effect size
A 1.76

IHig
Low

Sample size: 10
Theoretical power: 18%

il

]

Sample size: 30

0 0.5
Theoretical power: 48%

30 replicates

ML

|
\
97%

)
(-
(qe)
D)
-
0.50 %
)
; z
D)
Sample size: 64 1.03 -0
Theoretical power: 80% é 8
(=
64 replicates  ew= 050 L
: — 0.32 k|CI_)
Simulated example =
0 O
Halsey, Curran- SR
Everett, Volwer \ ———
and Drummond, |00 replicates  ss» 0.50
Nature Methods, = .
2015 significant difference oot o001 001005 10

between means log p-value



CONFIDENCE INTERVALS PROVIDE COMPLEMENTARY
INSIGHT

Population A \ Population B
/ Sample
size 10 30 100
4 -
1 2 °
Sample .. y o
0 05 values 04 c¥ ot oo
_2 -
-4 -
2 A -
Effect size -
and 95% Cls || ..]..Jog f- {g. I .................. S T
0+—4 $ 1 t t
-2 |

Simulated example
Halsey, Curran-Everett, Volwer and Drummond, Nature Methods, 2015
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PITFALL: MULTIPLE TESTING

« An fMRI| on dead fish

* Found many active brain regions

- All background noise and random variation

. Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon:
t An argument for multiple comparisons correction
i Craig M. Bennett!, Abigail A. Baird?, Michael B. Miller!, and George L. Wolford3

1 Psychology Department, University of California Santa Barbara, Santa Barbara, CA; 2 Department of Psychology, Vassar College, Poughkeepsie, NY;
3 Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH

INTRODUCTION GLM RESULTS

With the extreme dimensionality of functional neuroimaging data comes
extreme risk for false positives. Across the 130,000 voxels in a typical fMRI
volume the probability of a false positive is almost certain. Correction for
multiple comparisons should be completed with these datasets, but is often
ignored by investigators. To illustrate the magnitude of the problem we
carried out a real experiment that demonstrates the danger of not correcting
for chance properly.

METHODS

t-value

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.
The salmon was anproximatelv 18 inches lone. weighed 3.8 1bs. and was not alive at
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MULTIVARIATE TYPE | ERROR

How many false positives can we tolerate!
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PITFALL: OUTCOME SWITCHING

*  Anti-depressant Paxil was studied for several main outcomes

*  None showed an effect
*  Some secondary outcomes dis

»  Switched the outcome of the trial and used to market the drug

‘/g‘”‘ SCIENCE & HEALTH - 200

How researchers dupe the public
with a sneaky practice called
"outcome switching”

Updated by Julia Belluz on December 29, 2015, 8:10 a.m. ET 7 N /
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PITFALL: NOT PRE-SPECIFIED DATA
SELECTION AND ANALYSIS

«  Compare 2 groups: women at peak and off peak fertility cycle

« A series of choices of which women to include in which
comparison group

»  (Conclude that at peak fertility women are more likely to wear
red or pink shirts

The garden of forking paths: Why multiple comparisons can be a problem,
even when there is no “fishing expedition” or ‘“p-hacking” and the research
hypothesis was posited ahead of time*

Andrew Gelman' and Eric Loken?
14 Nov 2013

Researcher degrees of freedom can lead to a multiple comparisons problem, even in settings
where researchers perform only a single analysis on their data. The problem is there can be a
large number of potential comparisons when the details of data analysis are highly contingent on
data, without the researcher having to perform any conscious procedure of fishing or examining
multiple p-values. We discuss in the context of several examples of published papers where
data-analysis decisions were theoretically-motivated based on previous literature, but where the
details of data selection and analysis were not pre-specified and, as a result, were contingent on
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TAKE-AWAY'S
* Define the problem

» translate biological/clinical goal into statistical goal

* Experimental design: avoid bias and inefficiency

* randomization, replication, blocking

* Follow a pre-defined design and analysis protocol
» do not alter the design

* do not cherry-pick data/parameters
» understand and state limitations

* Document all the steps

« In form of the executable code
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Points of significance: Importance of being

uncertain
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Points of Significance: Error bars
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