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WHY STATISTICS?

• Variation and uncertainty are unavoidable
• Technical variation: sampling handling, storage, processing
• Instrumental variation: elution time, ion suppression
• Signal processing: peak boundaries, identity, intensity
• Biological variation: variation in protein abundance 

• Overall goal: effective, reproducible research
• Experimental design: unbiased and efficient experiments
• Data analysis: objective conclusions in presence of uncertainty
• Statistical tools: re-analysis, peer review, reproducibility
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"Statistics: a body of methods for making wise decisions in 
the face of uncertainty." (W. A. Wallis)
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WHY STATISTICS?



OUTLINE

• Translate scientific question into statistics
• Statistical terms for ‘biomarker’ (or ‘signature’)

• Experimental design
• Replication, randomization, blocking

• Basic data analysis
• Simple summaries and models

• Words of caution
• Instability, multiplicity, reproducible research
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STATISTICAL GOAL 1: CLASS DISCOVERY

• No known class labels
• E.g., no ‘healthy’ or ‘disease’
• All variation treated equally
• No error rates

• Can’t find something 
meaningful if unsure 
what we look for
• Best used for visualization
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Can look for patterns in
both samples and genes

Gehlenborg et al, Nature Methods, 2010

7-3

Discover proteins or subjects with similar patterns



STATISTICAL GOAL 2: CLASS COMPARISON

• Known class labels
• Compare group averages
• Report p-values, posterior 

probabilities etc

• Useful when compare 
groups of subjects
• Best used for basic biology 
• Initial (Tier III) biomarker 

discovery screen

 6

Compare mean abundances in subject groups

Disease group

lo
g
 (

fe
a
tu

re
 a

b
u
n
d
a
n
c
e
)

6

8

10

12

14

controls NSTEMI stable STEMI unstable



DIFFERENTIALLY ABUNDANT PROTEINS 
ARE NOT ALWAYS BIOMARKERS
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BIOMARKER PROTEINS ARE NOT 
ALWAYS DIFFERENTIALLY ABUNDANT
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STATISTICAL GOAL 3: CLASS PREDICTION

• Known class labels
• Predict individual subjects
• Report misclassification 

error (sensitivity, specificity, 
predictive value etc)

• Useful when focus on an 
individual
• Tier I or Tier II biomarker 

discovery studies
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OUTLINE

• Translate scientific question into statistics
• Statistical terms for ‘biomarker’ (or ‘signature’)

• Experimental design
• Replication, randomization, blocking

• Basic data analysis
• Simple summaries and models

• Words of caution
• Instability, multiplicity, reproducible research
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A STATISTICIAN’S VIEW OF THE EXPERIMENT
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DEFINITION OF BIAS AND INEFFICIENCY
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PRINCIPLE 1: REPLICATION
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(1) carries out the inference and (2) minimizes inefficiencies
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Two levels of randomness imply two types of replication:
◆ Biological replicates: selecting multiple subjects from the population
◆ Technical replicates: multiple runs per subject 

Oberg and Vitek, J. Proteome Research, 8, 2009
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PRINCIPLE 2: RANDOMIZATION

 15

Prevents bias

Oberg and Vitek, J. Proteome Research, 8, 2009
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● Serum samples with five types of cancer
● SELDI-TOF MS
◆ normalized, peak picked

EXAMPLE: LACK OF RANDOMIZATION
Hu, Coombes, Morris, Baggerly, Briefings in Functional Genomics, 2005

Cancer subtype 
confounded with 

time

Time of spectral acquisition

Same time-
based clustering 

on the QC 
samples!

distance metric based on the Pearson
correlation coefficient. Surprisingly, we
observed that simple clustering produced
six groups instead of five (see the top
panel of Figure 1). We investigated the
clinical information and it turned out that
the resulting six clusters matched the run
dates of the samples, rather than the
biologically different groups (see the
bottom panel of Figure 1). We found that
the serum samples from patients
diagnosed with one cancer subtype had
been run at least a month before all of the
rest, and that the run date affected all of
the sample spectra to some degree. We
were able to verify this by examining the
spectra from a material that is commonly
used for quality control (QC), which the
researchers had run concurrently. The
spectra from the QC material showed the
same clustering pattern as the biological
samples. We attempted to apply simple
additive shifts to align the QC samples to
fix the problem, but failed.

Comments
Proteomic profiles are not yet very
reproducible over time, and the intensities

are semiquantitative at best. To focus on
the biological contrasts between groups of
tissue samples, we recommend that
investigators include some members from
each contrasting sample in each
laboratory-run group. If the run groups
are large, simply randomising the run
order will achieve this. Running all
samples ‘as they come in’ is not yet a good
way to operate experiments in proteomic
mass spectrometry.

Case study 2: Collection
protocols
Another group of researchers conducted
an experiment at M. D. Anderson on
tissue samples from 50 patients with
cancer, which were believed to include
two subtypes of the disease. The
researchers applied three different
fractionation protocols (identified as
myo25, myo70 and bsa70) to produce
three different spectra per sample.
Splitting a sample into three fractions can
better highlight different subsets of the
proteins.
The disease subtype information was

‘stripped out’ and the resultant blinded

Run date effects can be
larger than biological
effects

Figure 1: Detection of
subtypes of cancer

324 & HENRY STEWART PUBLICATIONS 1473-9550. BRIEF INGS IN FUNCTIONAL GENOMICS AND PROTEOMICS . VOL 3. NO 4. 322–331. FEBRUARY 2005

Hu et al.

Hierarchical clustering of samples



• Study of gene expression between Asians and Europeans
• Found that 78% of genes are differentially 

• Asians were profiles in one year, and Europeans in another
• The difference therefore likely reflects a batch effect 

BEWARE OF BIG EFFECTS 
THEY LIKELY REFLECT FLAWS OF THE DESIGN

http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/

Source: a blog by Jeff Leek, Biostatistics, John Hopkins 
University

http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/


• Study of gene expression between Asians and Europeans
• Found that 78% of genes are differentially 

• Asians were profiles in one year, and Europeans in another
• The difference therefore likely reflects a batch effect 

BEWARE OF BIG EFFECTS 
THEY LIKELY REFLECT FLAWS OF THE DESIGN

http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/

Source: a blog by Jeff Leek, Biostatistics, John Hopkins 
University

‘To call in the statistician after the experiment is done may be no 
more than asking him to perform a post-mortem examination: 
he may be able to say what the experiment died of ’

— Ronald Fisher

http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/


PRINCIPLE 3: BLOCKING

 19

Helps reduce both bias and inefficiency

Oberg and Vitek, J. Proteome Research, 8, 2009

Complete randomization 
=  inflated variance

Block-randomization  
= restriction on randomization

= systematic allocation
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Figure 3: (a) Sequential acquisition creates a confounding e�ect: the di�erence in group means
can be due to both di�erences between groups and di�erences between days. (b) Complete ran-
domization removes the confounding e�ect. The variance within each group is now a combination
of the biological di�erence and of the day-to-day variation. (c) Paired design uses day as a block of
size 2. The design allows one to compare di�erences between individuals from two groups within a
block.

Observed Systematic Random deviation
feature = mean signal + due to all sources

intensity of disease group of variation

yij = Group meani + Errorj(i)

� N
�
0, �2

⇥

Figure 4: Statistical model for a completely randomized design with a single mass spectrum
replicate per patient. i indicates the index of a disease group, and j(i) the index of a patient within
the group. All Errorj(i) are assumed independent.

Observed Systematic Random Random Random
feature = mean signal + deviation due to + deviation due to + deviation due to

intensity of disease group individual sample preparation measurement error

yijkl = Group meani + Indiv(Group)j(i) + Prep(Indiv)k(ij) + Errorl(ijk)
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Figure 5: Statistical model for a mixed e�ects analysis of variance (ANOVA). i is the index of
a disease group, j(i) the index of a patient within the group, k(ij) is the index of the sample
preparation within the patient, and l(ijk) is the replicate run. Indiv(Group)j(i), Prep(Indiv)k(ij)

and Errorl(ijk) are all independent.

40

Two levels of randomness imply two types of blocks:
◆ Biological replicates: subjects having similar characteristics (e.g. age)
◆ Technical replicates: samples processed together (e.g. in a same day)  
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EXAMPLE: LACK OF BLOCKING
Hu, Coombes, Morris, Baggerly, Briefings in Functional Genomics, 2005

● Serum samples with two types of cancer
● SELDI-TOF MS, 3 fractions
◆ normalized, peak picked
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dataset was brought to our group for
analysis. The aim of the analysis was to
perform unsupervised clustering of the
data to see if the two subtypes could be
identified correctly and blindly. We
preprocessed the spectral data in a manner
similar to that described in the first case
study, including the methods of SPDBC
and normalisation to the total ion current.
We analysed the spectra within each of
the three fractions separately. After
aligning the peaks across the spectra
within each fraction and filtering out the
noise, we identified 172, 130 and 130
peaks, respectively, in the fractions from
the myo25, myo70 and bsa70 protocols.
We then performed hierarchical
clustering analyses in each of the three
fractions. The results seemed very
exciting, with two distinct clusters clearly
identified in each fraction. We also
observed that the myo25 and myo70
fractions produced the same two clusters,
and that clustering from the bsa70 fraction
was identical to the others, except for the
classification of a single sample. These
results were communicated and the data
were unblended; however, further
exploration showed that the split that we
had found did not match the subtypes
assumed by the investigators. Rather, the

split matched very closely with the day on
which the sample collection protocol had
been changed midway through the
experiment. Figure 2 illustrates the
clustering pattern within the fraction
bsa70.

Comments
Many features of an experiment affect
protein expression profiles, and we have
not yet been able to identify all of them.
We recommend that investigators define a
single protocol and follow it throughout
the experiment. This will reduce the
number of factors that are of concern
during the data analysis. If a protocol must
be altered, the investigator should make
sure that samples representing both sides
of the contrast of interest are present for
each run batch that the laboratory
processes, and should accordingly be
prepared to analyse the data in batches.

Case study 3: Calibration and
sample handling
A third group of researchers at M. D.
Anderson collected urine samples from
individuals for proteomic analysis in the
study of cancer. The study focused on five
categories of human subjects: disease-free
individuals, patients presenting with low-

Changes in collection
protocols can have large
effects

Figure 2: Discovery of
clusters in data from
bsa70 fraction of tumour
samples

& HENRY STEWART PUBLICATIONS 1473-9550. BRIEF INGS IN FUNCTIONAL GENOMICS AND PROTEOMICS . VOL 3. NO 4. 322–331. FEBRUARY 2005 32 5

The importance of experimental design in proteomic mass spectrometry experiments

Hierarchical 
clustering of 

samples

Protocol change



MATCHING
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Blocking with respect to biological risk factors

Block-randomization  
= restriction on randomization

= systematic allocation

Complete randomization 
=  inflated variance

Käll and Vitek, PLoS Computational Biology, 7, 2011



EXAMPLE
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Block-randomized selection of subjects from repository
Disease group

Control Stable angina Unstable angina NSTEMI STEMI

Stratification

� 58 y.o; Female 354 300 49 39 29
� 58 y.o; Male 701 843 143 86 54

< 58 y.o; Female 80 56 5 5 8
< 58 y.o; Male 264 190 34 23 27

Table 1: Number of serum samples from subjects with coronary artery disease and controls, available for
each combination of age group, gender and disease group.

Disease group
Control Stable angina Unstable angina NSTEMI STEMI

Stratification

� 58 y.o; Female 3 3 3 3 3
� 58 y.o; Male 3 3 3 3 3

< 58 y.o; Female 2 2 2 2 2
< 58 y.o; Male 2 2 2 2 2

Table 2: Number of serum samples selected for the proteomic experiment. Each disease group has the same
number of subjects for each combination of age group and gender.

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 3: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m identified proteins. m and m0

are fixed, and R, S, T , U and V are random. Only m and R are observed.

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# of proteins in the set s�K K s
# of proteins not in the set (m� s)� (R�K) R�K m� s

Total m�R R m

Table 4: Outcomes of the gene set enrichment analysis (GSEA) for one protein set. m is the total number of proteins
(also called the “universe”), and s is the total number of proteins in the pre-specified set. The Hypergeometric test
is conditional on the number of di�erentially abundant proteins R. It tests the null hypothesis that the number of
di�erentially abundant proteins in the set K is as expected by random chance, against the alternative hypothesis
that K is larger than as expected by random chance.
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that K is larger than as expected by random chance.
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Counts in the initial repository of samples

Counts of subjects included in the study

Mass spectra acquired without technical replication



OUTLINE

• Translate scientific question into statistics
• Statistical terms for ‘biomarker’ (or ‘signature’)

• Experimental design
• Replication, randomization, blocking

• Basic data analysis
• Simple summaries and models

• Words of caution
• Instability, multiplicity, reproducible research
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COMPARE DESIGNS
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Statistical inference: conclusions on 
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Simple example: label-free experiment, one feature/protein
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Conclusion: 
On log scale, estimates of 
FC are ratios of geometric 
means
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Simple example: label-free experiment, one feature/protein
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# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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Ĝ1 � Ĝ0 6= 0 (2)

FDR = E


V

max(R,1)

�
. (3)

FWER = P [V > 0] . (4)

FPR = E


V

m0

�
. (5)

1


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size. Notice that it is still possible for a sample mean to fall far 
from the population mean, especially for small n. For example, 
in ten iterations of drawing 10,000 samples of size n = 3 from the 
irregular distribution, the number of times the sample mean fell 
outside μ ± s (indicated by vertical dotted lines in Fig. 3) ranged 
from 7.6% to 8.6%. Thus, use caution when interpreting means 
of small samples.

Always keep in mind that your measurements are estimates, which 
you should not endow with “an aura of exactitude and finality”5 . The 
omnipresence of variability will ensure that each sample will be dif-
ferent. Moreover, as a consequence of the 1/√n proportionality fac-
tor in the CLT, the precision increase of a sample’s estimate of the 
population is much slower than the rate of data collection. In Figure 4  
we illustrate this variability and convergence for three samples drawn 
from the distribution in Figure 2a, as their size is progressively 
increased from n = 1 to n = 100. Be mindful of both effects and their 
role in diminishing the impact of additional measurements: to double 
your precision, you must collect four times more data.

Next month we will continue with the theme of estimation and dis-
cuss how uncertainty can be bounded with confidence intervals and 
visualized with error bars.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2613).
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large. When constructing a sample, it is not always obvious whether 
it is free from bias. For example, surveys sample only individuals who 
agreed to participate and do not capture information about those who 
refused. These two groups may be meaningfully different.

Samples are our windows to the population, and their statistics are 
used to estimate those of the population. The sample mean and s.d. are 
denoted by  –X     and s. The distinction between sample and population 
variables is emphasized by the use of Roman letters for samples and 
Greek letters for population (s versus s).

Sample parameters such as  –X     have their own distribution, called 
the sampling distribution (Fig. 2c), which is constructed by consider-
ing all possible samples of a given size. Sample distribution param-
eters are marked with a subscript of the associated sample variable 
(for example, μX–   and sX–   are the mean and s.d. of the sample means 
of all samples). Just like the population, the sampling distribution is 
not directly measurable because we do not have access to all possible 
samples. However, it turns out to be an extremely useful concept in 
the process of estimating population statistics.

Notice that the distribution of sample means in Figure 2c looks 
quite different than the population in Figure 2a. In fact, it appears 
similar in shape to a normal distribution. Also notice that its spread, 
sX–  , is quite a bit smaller than that of the population, s .  Despite these 
differences, the population and sampling distributions are intimately 
related. This relationship is captured by one of the most important and 
fundamental statements in statistics, the central limit theorem (CLT).

The CLT tells us that the distribution of sample means (Fig. 2c) 
will become increasingly close to a normal distribution as the sample 
size increases, regardless of the shape of the population distribution 

(Fig. 2a) as long as the frequency of extreme values drops off quickly. 
The CLT also relates population and sample distribution parameters 
by μX–   = μ and sX–   = s/√n. The terms in the second relationship are 
often confused: sX–   is the spread of sample means, and s is the spread 
of the underlying population. As we increase n, sX–   will decrease (our 
samples will have more similar means) but s will not change (sam-
pling has no effect on the population). The measured spread of sample 
means is also known as the standard error of the mean (s.e.m., SE –X     ) 
and is used to estimate sX–  .

A demonstration of the CLT for different population distri-
butions (Fig. 3) qualitatively shows the increase in precision of 
our estimate of the population mean with increase in sample 

Population distribution
Normal Skewed Uniform Irregular

n = 3

n = 5

n = 10

n = 20

Sampling distribution of sample mean

Figure 3 | The distribution of sample means from most distributions will be 
approximately normally distributed. Shown are sampling distributions of 
sample means for 10,000 samples for indicated sample sizes drawn from four 
different distributions. Mean and s.d. are indicated as in Figure 1.
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closely approximate μ and s. The s.e.m. (s/√n) is an estimate of sX–  and 
measures how well the sample mean approximates the population mean.
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size. Notice that it is still possible for a sample mean to fall far 
from the population mean, especially for small n. For example, 
in ten iterations of drawing 10,000 samples of size n = 3 from the 
irregular distribution, the number of times the sample mean fell 
outside μ ± s (indicated by vertical dotted lines in Fig. 3) ranged 
from 7.6% to 8.6%. Thus, use caution when interpreting means 
of small samples.

Always keep in mind that your measurements are estimates, which 
you should not endow with “an aura of exactitude and finality”5 . The 
omnipresence of variability will ensure that each sample will be dif-
ferent. Moreover, as a consequence of the 1/√n proportionality fac-
tor in the CLT, the precision increase of a sample’s estimate of the 
population is much slower than the rate of data collection. In Figure 4  
we illustrate this variability and convergence for three samples drawn 
from the distribution in Figure 2a, as their size is progressively 
increased from n = 1 to n = 100. Be mindful of both effects and their 
role in diminishing the impact of additional measurements: to double 
your precision, you must collect four times more data.

Next month we will continue with the theme of estimation and dis-
cuss how uncertainty can be bounded with confidence intervals and 
visualized with error bars.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2613).
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large. When constructing a sample, it is not always obvious whether 
it is free from bias. For example, surveys sample only individuals who 
agreed to participate and do not capture information about those who 
refused. These two groups may be meaningfully different.

Samples are our windows to the population, and their statistics are 
used to estimate those of the population. The sample mean and s.d. are 
denoted by  –X     and s. The distinction between sample and population 
variables is emphasized by the use of Roman letters for samples and 
Greek letters for population (s versus s).

Sample parameters such as  –X     have their own distribution, called 
the sampling distribution (Fig. 2c), which is constructed by consider-
ing all possible samples of a given size. Sample distribution param-
eters are marked with a subscript of the associated sample variable 
(for example, μX–   and sX–   are the mean and s.d. of the sample means 
of all samples). Just like the population, the sampling distribution is 
not directly measurable because we do not have access to all possible 
samples. However, it turns out to be an extremely useful concept in 
the process of estimating population statistics.

Notice that the distribution of sample means in Figure 2c looks 
quite different than the population in Figure 2a. In fact, it appears 
similar in shape to a normal distribution. Also notice that its spread, 
sX–  , is quite a bit smaller than that of the population, s .  Despite these 
differences, the population and sampling distributions are intimately 
related. This relationship is captured by one of the most important and 
fundamental statements in statistics, the central limit theorem (CLT).

The CLT tells us that the distribution of sample means (Fig. 2c) 
will become increasingly close to a normal distribution as the sample 
size increases, regardless of the shape of the population distribution 

(Fig. 2a) as long as the frequency of extreme values drops off quickly. 
The CLT also relates population and sample distribution parameters 
by μX–   = μ and sX–   = s/√n. The terms in the second relationship are 
often confused: sX–   is the spread of sample means, and s is the spread 
of the underlying population. As we increase n, sX–   will decrease (our 
samples will have more similar means) but s will not change (sam-
pling has no effect on the population). The measured spread of sample 
means is also known as the standard error of the mean (s.e.m., SE –X     ) 
and is used to estimate sX–  .

A demonstration of the CLT for different population distri-
butions (Fig. 3) qualitatively shows the increase in precision of 
our estimate of the population mean with increase in sample 
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Sampling distribution of sample mean

Figure 3 | The distribution of sample means from most distributions will be 
approximately normally distributed. Shown are sampling distributions of 
sample means for 10,000 samples for indicated sample sizes drawn from four 
different distributions. Mean and s.d. are indicated as in Figure 1.
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closely approximate μ and s. The s.e.m. (s/√n) is an estimate of sX–  and 
measures how well the sample mean approximates the population mean.
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POINTS OF SIGNIFICANCE

Importance of being 
uncertain
Statistics does not tell us whether we are right. It tells 
us the chances of being wrong.

When an experiment is reproduced we almost never obtain exactly 
the same results. Instead, repeated measurements span a range of val-
ues because of biological variability and precision limits of measuring 
equipment. But if results are different each time, how do we determine 
whether a measurement is compatible with our hypothesis? In “the 
great tragedy of Science—the slaying of a beautiful hypothesis by an 
ugly fact”1, how is ‘ugliness’ measured?

Statistics helps us answer this question. It gives us a way to quanti-
tatively model the role of chance in our experiments and to represent 
data not as precise measurements but as estimates with error. It also 
tells us how error in input values propagates through calculations. 
The practical application of this theoretical framework is to associate 
uncertainty to the outcome of experiments and to assign confidence 
levels to statements that generalize beyond observations.

Although many fundamental concepts in statistics can be under-
stood intuitively, as natural pattern-seekers we must recognize the 
limits of our intuition when thinking about chance and probability. 
The Monty Hall problem is a classic example of how the wrong 
answer can appear far too quickly and too credibly before our eyes. 
A contestant is given a choice of three doors, only one leading to 
a prize. After selecting a door (e.g., door 1), the host opens one of 
the other two doors that does not lead to a prize (e.g., door 2) and 
gives the contestant the option to switch their pick of doors (e.g., 
door 3). The vexing question is whether it is in the contestant’s 
best interest to switch. The answer is yes, but you would be in good 
company if you thought otherwise. When a solution was published 
in Parade magazine, thousands of readers (many with PhDs) wrote 
in that the answer was wrong2. Comments varied from “You made 
a mistake, but look at the positive side. If all those PhDs were 
wrong, the country would be in some very serious trouble” to “I 
must admit I doubted you until my fifth grade math class proved 
you right”2.

The Points of Significance column will help you move beyond an 
intuitive understanding of fundamental statistics relevant to your 
work. Its aim will be to address the observation that “approximate-
ly half the articles published in medical journals that use statistical 
methods use them incorrectly”3. Our presentation will be practical 
and cogent, with focus on foundational concepts, practical tips and 
common misconceptions4. A spreadsheet will often accompany each 
column to demonstrate the calculations (Supplementary Table 1). 
We will not exhaust you with mathematics.

Statistics can be broadly divided into two categories: descriptive and 
inferential. The first summarizes the main features of a data set with 
measures such as the mean and standard deviation (s.d.). The second 
generalizes from observed data to the world at large. Underpinning 
both are the concepts of sampling and estimation, which address the 
process of collecting data and quantifying the uncertainty in these 
generalizations.

To discuss sampling, we need to introduce the concept of a popula-
tion, which is the set of entities about which we make inferences. The 
frequency histogram of all possible values of an experimental variable 
is called the population distribution (Fig. 1a). We are typically inter-
ested in inferring the mean (μ) and the s.d. (s) of a population, two 
measures that characterize its location and spread (Fig. 1b). The mean 
is calculated as the arithmetic average of values and can be unduly 
influenced by extreme values. The median is a more robust measure 

of location and more suitable for distributions that are skewed or oth-
erwise irregularly shaped. The s.d. is calculated based on the square 
of the distance of each value from the mean. It often appears as the 
variance (s2) because its properties are mathematically easier to for-
mulate. The s.d. is not an intuitive measure, and rules of thumb help us 
in its interpretation. For example, for a normal distribution, 39%, 68%, 
95% and 99.7% of values fall within ± 0.5s, ± 1s, ± 2s and ± 3s. These 
cutoffs do not apply to populations that are not approximately normal, 
whose spread is easier to interpret using the interquartile range.

Fiscal and practical constraints limit our access to the popula-
tion: we cannot directly measure its mean (μ) and s.d. (s). The best 
we can do is estimate them using our collected data through the 
process of sampling (Fig. 2). Even if the population is limited to 
a narrow range of values, such as between 0 and 30 (Fig. 2a), the 

random nature of sampling will impart uncertainty to our estimate 
of its shape. Samples are sets of data drawn from the population  
(Fig. 2b), characterized by the number of data points n, usually 
denoted by X and indexed by a numerical subscript (X1). Larger 
samples approximate the population better.

To maintain validity, the sample must be representative of the popu-
lation. One way of achieving this is with a simple random sample, 
where all values in the population have an equal chance of being 
selected at each stage of the sampling process. Representative does 
not mean that the sample is a miniature replica of the population. In 
general, a sample will not resemble the population unless n is very 
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Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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, (Ȳ1· � Ȳ2·) + t↵/2

q
s21
n1

+
s22
n2

�

G1 �G2 = 0 G1 �G2 6= 0

�

�

! = P{true peptide sequence 2 database} (1)

f(z) = [(1� !) + !FX(z)] fY(z) + [!FY(z)] fX(z) (2)

X Y Z (3)

FDR = P{Z = Y | Z > z⇤} =
P{Z = Y \ Z > Z⇤}

P{Z > z⇤} (4)

Z =

8
<

:
Y with probability 1� !;

max(X,Y ) with probability !.

(5)

FDR = E


V

max(R,1)

�
(6)

1


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Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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(Ȳ1· � Ȳ2·)� t↵/2

q
s21
n1

+
s22
n2

, (Ȳ1· � Ȳ2·) + t↵/2
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THIS MONTH

POINTS OF SIGNIFICANCE

Error bars
The meaning of error bars is often misinterpreted, 
as is the statistical significance of their overlap.

Last month in Points of Significance, we showed how samples are 
used to estimate population statistics. We emphasized that, because 
of chance, our estimates had an uncertainty. This month we focus on 
how uncertainty is represented in scientific publications and reveal 
several ways in which it is frequently misinterpreted.

The uncertainty in estimates is customarily represented using 
error bars. Although most researchers have seen and used error 
bars, misconceptions persist about how error bars relate to statisti-
cal significance. When asked to estimate the required separation 
between two points with error bars for a difference at significance  
P = 0.05, only 22% of respondents were within a factor of 2 (ref. 1). 
In light of the fact that error bars are meant to help us assess the 
significance of the difference between two values, this observation 
is disheartening and worrisome.

Here we illustrate error bar differences with examples based on a 
simplified situation in which the values are means of independent 
(unrelated) samples of the same size and drawn from normal popula-
tions with the same spread. We calculate the significance of the differ-
ence in the sample means using the two-sample t-test and report it as 
the familiar P value. Although reporting the exact P value is preferred, 
conventionally, significance is often assessed at a P = 0.05 threshold. 
We will discuss P values and the t-test in more detail in a subsequent 
column.

The importance of distinguishing the error bar type is illustrat-
ed in Figure 1, in which the three common types of error bars— 
standard deviation (s.d.), standard error of the mean (s.e.m.) and con-
fidence interval (CI)—show the spread in values of two samples of size 
n = 10 together with the P value of the difference in sample means. In  
Figure 1a, we simulated the samples so that each error bar type has the 
same length, chosen to make them exactly abut. Although these three 
data pairs and their error bars are visually identical, each represents a 
different data scenario with a different P value. In Figure 1b, we fixed 
the P value to P = 0.05 and show the length of each type of bar for this 
level of significance. In this latter scenario, each of the three pairs of 
points represents the same pair of samples, but the bars have differ-
ent lengths because they indicate different statistical properties of the 
same data. And because each bar is a different length, you are likely 
to interpret each one quite differently. In general, a gap between bars 

does not ensure significance, nor does overlap rule it out—it depends 
on the type of bar. Chances are you were surprised to learn this unin-
tuitive result.

The first step in avoiding misinterpretation is to be clear about 
which measure of uncertainty is being represented by the error bar. 
In 2012, error bars appeared in Nature Methods in about two-thirds 
of the figure panels in which they could be expected (scatter and bar 
plots). The type of error bars was nearly evenly split between s.d. and 
s.e.m. bars (45% versus 49%, respectively). In 5% of cases the error 
bar type was not specified in the legend. Only one figure2 used bars 
based on the 95% CI. CIs are a more intuitive measure of uncertainty 
and are popular in the medical literature.

Error bars based on s.d. inform us about the spread of the popula-
tion and are therefore useful as predictors of the range of new sam-
ples. They can also be used to draw attention to very large or small 
population spreads. Because s.d. bars only indirectly support visual 
assessment of differences in values, if you use them, be ready to help 
your reader understand that the s.d. bars reflect the variation of the 
data and not the error in your measurement. What should a read-
er conclude from the very large and overlapping s.d. error bars for  
P = 0.05 in Figure 1b? That although the means differ, and this can 
be detected with a sufficiently large sample size, there is considerable 
overlap in the data from the two populations.

Unlike s.d. bars, error bars based on the s.e.m. reflect the uncer-
tainty in the mean and its dependency on the sample size, n (s.e.m. 
= s.d./√n). Intuitively, s.e.m. bars shrink as we perform more mea-
surements. Unfortunately, the commonly held view that “if the 
s.e.m. bars do not overlap, the difference between the values is sta-
tistically significant” is incorrect. For example, when n = 10 and 
s.e.m. bars just touch, P = 0.17 (Fig. 1a). Conversely, to reach P = 
0.05, s.e.m. bars for these data need to be about 0.86 arm lengths 
apart (Fig. 1b). We cannot overstate the importance of recognizing 
the difference between s.d. and s.e.m.

The third type of error bar you are likely to encounter is that based 
on the CI. This is an interval estimate that indicates the reliability of a 
measurement3. When scaled to a specific confidence level (CI%)—the 
95% CI being common—the bar captures the population mean CI% 
of the time (Fig. 2a). The size of the s.e.m. is compared to the 95% CI 
in Figure 2b. The two are related by the t-statistic, and in large samples 
the s.e.m. bar can be interpreted as a CI with a confidence level of 
67%. The size of the CI depends on n; two useful approximations for 
the CI are 95% CI ≈ 4 × s.e.m (n = 3) and 95% CI ≈ 2 × s.e.m. (n > 15).  
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Figure 1 | Error bar width and interpretation of spacing depends on the error 
bar type. (a,b) Example graphs are based on sample means of 0 and 1  
(n = 10). (a) When bars are scaled to the same size and abut, P values span 
a wide range. When s.e.m. bars touch, P is large (P = 0.17). (b) Bar size and 
relative position vary greatly at the conventional P value significance cutoff 
of 0.05, at which bars may overlap or have a gap.

Figure 2 | The size and position of confidence intervals depend on the 
sample. On average, CI% of intervals are expected to span the mean—about 
19 in 20 times for 95% CI. (a) Means and 95% CIs of 20 samples (n = 10) 
drawn from a normal population with mean m and s.d. σ. By chance, two of 
the intervals (red) do not capture the mean. (b) Relationship between s.e.m. 
and 95% CI error bars with increasing n.
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THIS MONTH

POINTS OF SIGNIFICANCE

Error bars
The meaning of error bars is often misinterpreted, 
as is the statistical significance of their overlap.

Last month in Points of Significance, we showed how samples are 
used to estimate population statistics. We emphasized that, because 
of chance, our estimates had an uncertainty. This month we focus on 
how uncertainty is represented in scientific publications and reveal 
several ways in which it is frequently misinterpreted.

The uncertainty in estimates is customarily represented using 
error bars. Although most researchers have seen and used error 
bars, misconceptions persist about how error bars relate to statisti-
cal significance. When asked to estimate the required separation 
between two points with error bars for a difference at significance  
P = 0.05, only 22% of respondents were within a factor of 2 (ref. 1). 
In light of the fact that error bars are meant to help us assess the 
significance of the difference between two values, this observation 
is disheartening and worrisome.

Here we illustrate error bar differences with examples based on a 
simplified situation in which the values are means of independent 
(unrelated) samples of the same size and drawn from normal popula-
tions with the same spread. We calculate the significance of the differ-
ence in the sample means using the two-sample t-test and report it as 
the familiar P value. Although reporting the exact P value is preferred, 
conventionally, significance is often assessed at a P = 0.05 threshold. 
We will discuss P values and the t-test in more detail in a subsequent 
column.

The importance of distinguishing the error bar type is illustrat-
ed in Figure 1, in which the three common types of error bars— 
standard deviation (s.d.), standard error of the mean (s.e.m.) and con-
fidence interval (CI)—show the spread in values of two samples of size 
n = 10 together with the P value of the difference in sample means. In  
Figure 1a, we simulated the samples so that each error bar type has the 
same length, chosen to make them exactly abut. Although these three 
data pairs and their error bars are visually identical, each represents a 
different data scenario with a different P value. In Figure 1b, we fixed 
the P value to P = 0.05 and show the length of each type of bar for this 
level of significance. In this latter scenario, each of the three pairs of 
points represents the same pair of samples, but the bars have differ-
ent lengths because they indicate different statistical properties of the 
same data. And because each bar is a different length, you are likely 
to interpret each one quite differently. In general, a gap between bars 

does not ensure significance, nor does overlap rule it out—it depends 
on the type of bar. Chances are you were surprised to learn this unin-
tuitive result.

The first step in avoiding misinterpretation is to be clear about 
which measure of uncertainty is being represented by the error bar. 
In 2012, error bars appeared in Nature Methods in about two-thirds 
of the figure panels in which they could be expected (scatter and bar 
plots). The type of error bars was nearly evenly split between s.d. and 
s.e.m. bars (45% versus 49%, respectively). In 5% of cases the error 
bar type was not specified in the legend. Only one figure2 used bars 
based on the 95% CI. CIs are a more intuitive measure of uncertainty 
and are popular in the medical literature.

Error bars based on s.d. inform us about the spread of the popula-
tion and are therefore useful as predictors of the range of new sam-
ples. They can also be used to draw attention to very large or small 
population spreads. Because s.d. bars only indirectly support visual 
assessment of differences in values, if you use them, be ready to help 
your reader understand that the s.d. bars reflect the variation of the 
data and not the error in your measurement. What should a read-
er conclude from the very large and overlapping s.d. error bars for  
P = 0.05 in Figure 1b? That although the means differ, and this can 
be detected with a sufficiently large sample size, there is considerable 
overlap in the data from the two populations.

Unlike s.d. bars, error bars based on the s.e.m. reflect the uncer-
tainty in the mean and its dependency on the sample size, n (s.e.m. 
= s.d./√n). Intuitively, s.e.m. bars shrink as we perform more mea-
surements. Unfortunately, the commonly held view that “if the 
s.e.m. bars do not overlap, the difference between the values is sta-
tistically significant” is incorrect. For example, when n = 10 and 
s.e.m. bars just touch, P = 0.17 (Fig. 1a). Conversely, to reach P = 
0.05, s.e.m. bars for these data need to be about 0.86 arm lengths 
apart (Fig. 1b). We cannot overstate the importance of recognizing 
the difference between s.d. and s.e.m.

The third type of error bar you are likely to encounter is that based 
on the CI. This is an interval estimate that indicates the reliability of a 
measurement3. When scaled to a specific confidence level (CI%)—the 
95% CI being common—the bar captures the population mean CI% 
of the time (Fig. 2a). The size of the s.e.m. is compared to the 95% CI 
in Figure 2b. The two are related by the t-statistic, and in large samples 
the s.e.m. bar can be interpreted as a CI with a confidence level of 
67%. The size of the CI depends on n; two useful approximations for 
the CI are 95% CI ≈ 4 × s.e.m (n = 3) and 95% CI ≈ 2 × s.e.m. (n > 15).  
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Figure 1 | Error bar width and interpretation of spacing depends on the error 
bar type. (a,b) Example graphs are based on sample means of 0 and 1  
(n = 10). (a) When bars are scaled to the same size and abut, P values span 
a wide range. When s.e.m. bars touch, P is large (P = 0.17). (b) Bar size and 
relative position vary greatly at the conventional P value significance cutoff 
of 0.05, at which bars may overlap or have a gap.

Figure 2 | The size and position of confidence intervals depend on the 
sample. On average, CI% of intervals are expected to span the mean—about 
19 in 20 times for 95% CI. (a) Means and 95% CIs of 20 samples (n = 10) 
drawn from a normal population with mean m and s.d. σ. By chance, two of 
the intervals (red) do not capture the mean. (b) Relationship between s.e.m. 
and 95% CI error bars with increasing n.
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A common misconception about CIs is an expectation that a CI 
captures the mean of a second sample drawn from the same popu-
lation with a CI% chance. Because CI position and size vary with 
each sample, this chance is actually lower.

This variety in bars can be overwhelming, and visually relating 
their relative position to a measure of significance is challenging. 
We provide a reference of error bar spacing for common P values in  
Figure 3. Notice that P = 0.05 is not reached until s.e.m. bars are sepa-
rated by about 1 s.e.m, whereas 95% CI bars are more generous and 
can overlap by as much as 50% and still indicate a significant differ-
ence. If 95% CI bars just touch, the result is highly significant (P = 
0.005). All the figures can be reproduced using the spreadsheet avail-
able in Supplementary Table 1, with which you can explore the rela-
tionship between error bar size, gap and P value.

Be wary of error bars for small sample sizes—they are not robust, 
as illustrated by the sharp decrease in size of CI bars in that regime 
(Fig. 2b). In these cases (e.g., n = 3), it is better to show individual 
data values. Furthermore, when dealing with samples that are related 
(e.g., paired, such as before and after treatment), other types of error 
bars are needed, which we will discuss in a future column.

It would seem, therefore, that none of the error bar types is intui-
tive. An alternative is to select a value of CI% for which the bars 
touch at a desired P value (e.g., 83% CI bars touch at P = 0.05). 
Unfortunately, owing to the weight of existing convention, all three 
types of bars will continue to be used. With our tips, we hope you’ll 
be more confident in interpreting them. 
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2659).

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

1. Belia, S.F., Fidler, F., Williams, J. & Cumming, G. Psychol. Methods 10, 389–
396 (2005).

2. Frøkjær-Jensen, C., Davis, M.W., Ailion, M. & Jorgensen, E.M. Nat. Methods 9, 
117–118 (2012).

3. Cumming, G., Fidler, F. & Vaux, D.L. J. Cell. Biol. 177, 7–11 (2007).

Martin Krzywinski is a staff scientist at Canada’s Michael Smith Genome Sciences 
Centre. Naomi Altman is a Professor of Statistics at The Pennsylvania State 
University.

P

s.e.m. error bars 95% CI error bars

0.1    

    0.05  

0.01  

0.005

0.001

0 1.0 0 1.0
Sample mean Sample mean

Figure 3 | Size and position of s.e.m. and 95% CI error bars for common  
P values. Examples are based on sample means of 0 and 1 (n = 10).

Absence of overlap does not always mean stat. significance

n=10



STATISTICAL POWER

 34

Probability to detect a difference when it exists

Adapted from Krzywinski and Altman, Points of Significance Collection, Nature Methods
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.

(Log)-fold change

• Of biological interest, for each gene

FoldChange =
0
typical

0
value in group 1

0typical0 value in group 2

log2(FoldChange) = log2(0
typical

0
value in group 1)

�log2(0
typical

0
value in group 2)

• The minimalistic per-gene model (drop g)

Y1j
iid⇠ N (µ1,�

2
1), j = 1, . . . , n1

Y2j
iid⇠ N (µ2,�

2
2), j = 1, . . . , n2

• Model-based inference

H0 : µ1 = µ2,
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Ĝ1 � Ĝ0⌅
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 

P
ow

er

0H

Power
0.64

Specificity
0.95

Specificity
0.88

Power
0.800.20

β

Power
 1 – β

α

α1 –
Specificity

0.10.2
0.0

01

0.0
00

1

0.0
00

0110 128 14
Expression

AH

10 128 14
Expression

10 2 3 4 5
1.0

0.8

0.6

0.4

0.2

0
0.0

5
0.0

25
0.0

050.0
1

α

x* – μ0
x* = 11.64 x* = 11.17

α
0.05

β
0.36

α
0.12

Compromise between specificity and power Specificity and power relationship

μ0

Aμ

a b

Power
0.26

0.84

0.53

Power
0.53

0.97

0.83

0H

10 128 14

AH

21 6 7 9 1083 4 5

1.0

0.8

0.6

0.4

0.2

0

n
10 2 3

1.0

0.8

0.6

0.4

0.2

0

d

n = 1

n = 3

n = 7

10 128 14

d = 1
d = 1 n = 3

d = 1.5

d = 2

Average expression Average expression

P
ow

er

P
ow

er

Impact of sample size on power Impact of effect size on power

0.05
0.02
0.01
0.005

α
0.05
0.02
0.01
0.005

α

a b

Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.

1140 | VOL.10 NO.12 | DECEMBER 2013 | NATURE METHODS

THIS MONTH

H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 

P
ow

er

0H

Power
0.64

Specificity
0.95

Specificity
0.88

Power
0.800.20

β

Power
 1 – β

α

α1 –
Specificity

0.10.2
0.0

01

0.0
00

1

0.0
00

0110 128 14
Expression

AH

10 128 14
Expression

10 2 3 4 5
1.0

0.8

0.6

0.4

0.2

0
0.0

5
0.0

25
0.0

050.0
1

α

x* – μ0
x* = 11.64 x* = 11.17

α
0.05

β
0.36

α
0.12

Compromise between specificity and power Specificity and power relationship

μ0

Aμ

a b

Power
0.26

0.84

0.53

Power
0.53

0.97

0.83

0H

10 128 14

AH

21 6 7 9 1083 4 5

1.0

0.8

0.6

0.4

0.2

0

n
10 2 3

1.0

0.8

0.6

0.4

0.2

0

d

n = 1

n = 3

n = 7

10 128 14

d = 1
d = 1 n = 3

d = 1.5

d = 2

Average expression Average expression

P
ow

er

P
ow

er

Impact of sample size on power Impact of effect size on power

0.05
0.02
0.01
0.005

α
0.05
0.02
0.01
0.005

α

a b

Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.

trades off the sensitivity and the specificity of the test
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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Ĝ1 � Ĝ0⌅
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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results, when the researcher may be willing to pursue low- 
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

POINTS OF SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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AMERICAN STATISTICAL ASSOCIATION (ASA) STATEMENT 
ON STATISTICAL SIGNIFICANCE AND P-VALUES

• P-values can indicate how incompatible the data 
are with a specified statistical model

• P-values do not measure the probability that the 
studied hypothesis is true, or the probability that 
the data were produced by random chance

• Scientific conclusions and business policy decisions 
should not be based only on whether a p-value 
passes a specific threshold
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AMERICAN STATISTICAL ASSOCIATION (ASA) STATEMENT 
ON STATISTICAL SIGNIFICANCE AND P-VALUES

• Proper inference requires full reporting and 
transparency

• A p-value, or statistical significance, does not 
measure the size of an effect or the importance 
of a result

• By itself, a p-value does not provide a good 
measure of evidence regarding a model or a 
hypothesis

 40
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WITH SMALL SAMPLE SIZE, P-VALUES ARE UNSTABLE

• Repeatedly sampling data leads to different results
• The problem worsens when testing many proteins
• Partial solutions:

• Larger sample size
• Adjustment for multiple testing
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The fickle P value generates irreproducible results
Lewis G Halsey, Douglas Curran-Everett, Sarah L Vowler & Gordon B Drummond

The reliability and reproducibility of science are under scrutiny. However, a major cause of this lack of 
repeatability is not being considered: the wide sample-to-sample variability in the P value. We explain 
why P is fickle to discourage the ill-informed practice of interpreting analyses based predominantly on 
this statistic.

Reproducible research findings are a cor-
nerstone of the scientific method, providing 
essential validation. There has been recent 
recognition, however, that the results of 
published research can be difficult to repli-
cate1–7, an awareness epitomized by a series 
in Nature entitled “Challenges in irrepro-
ducible research” and by the Reproducibility 
Initiative, a project intended to identify 
and reward reproducible research (http://
val idat ion.scienceexchange.com/#/
reproducibilityinitiative). In a recent 
meeting at the American Association for 
the Advancement of Science headquar-
ters  involving many of the major journals 
reporting biomedical science research, a 
common set of principles and guidelines 
was agreed upon for promoting transpar-
ency and reproducibility8. These discus-
sions and initiatives all focused on a num-
ber of issues, including aspects of statistical 
reporting9, levels of statistical power (i.e., 
sufficient statistical capacity to find an 
effect; a ‘statistically significant’ finding)10 
and inclusion-exclusion criteria. Yet a fun-
damental problem inherent in standard 
statistical methods, one that is pervasively 
linked to the lack of reproducibility in 
research, remains to be considered: the 

wide sample-to-sample variability in the P 
value. This omission reflects a general lack 
of awareness about this crucial issue, and 
we address this matter here.

Focusing on the P value during statistical 
analysis is an entrenched culture11–13. The 
P value is often used without the realization 
that in most cases the statistical power of 
a study is too low for P to assist the inter-
pretation of the data (Box 1). Among the 
many and varied reasons for a fearful and 
hidebound approach to statistical practice, 
a lack of understanding is prominent14. A 
better understanding of why P is so unhelp-
ful should encourage scientists to reduce 
their reliance on this misleading concept.

Readers may know of the long-stand-
ing philosophical debate about the value 
and validity of null-hypothesis test-
ing15–17. Although the P value formalizes  

null-hypothesis testing, this article will not 
revisit these issues. Rather, we concentrate 
on how P values themselves are misunder-
stood.

Although statistical power is a central 
element in reliability18, it is often consid-
ered only when a test fails to demonstrate 
a real effect (such as a difference between 
groups): a ‘false negative’ result (see Box 2 
for a glossary of statistical terms used in 
this article). Many scientists who are not 
statisticians do not realize that the power of 
a test is equally relevant when considering 
statistically significant results, that is, when 
the null hypothesis appears to be unten-
able. This is because the statistical power of 
the test dramatically affects our capacity to 
interpret the P value and thus the test result. 
It may surprise many scientists to discover 
that interpreting a study result from its P 
value alone is spurious in all but the most 
highly powered designs. The reason for 
this is that unless statistical power is very 
high, the P value exhibits wide sample-to-
sample variability and thus does not reliably 
indicate the strength of evidence against the 
null hypothesis (Box 1).

We give a step-by-step, illustrated expla-
nation of how statistical power affects the 
reliability of the P value obtained from an 
experiment, with reference to previous 
Points of Significance articles published 
in Nature Methods, to help convey these 
issues. We suggest that, for this reason, 
the P value’s preeminence16 is unjustified 
and arguments about null-hypothesis tests 
become virtually irrelevant. Researchers 
would do better to discard the P value and 
use alternative statistical measures for data 
interpretation.

Population A Population B

1

0 0.5

Figure 1 | Simulated data distributions of two 
populations. The difference between the mean 
values is 0.5, which is the true (population) 
effect size. The standard deviation (the spread of 
values) of each population is 1.
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The misunderstanding about P
Ronald Fisher developed significance 
testing to make judgments about hypoth-
eses19, arguing that the lower the P value, 
the greater the reason to doubt the null 
hypothesis20. He suggested using the 
P value as a continuous variable to aid 
judgment. Today, scientific articles are 
typically peppered with P values, and often 
treat P as a dichotomous variable, slavishly 
focusing on a threshold value of 0.05. Such 
focus is unfounded because, for instance, 
P = 0.06 should be considered essential-
ly the same as P = 0.04; P values should 
not be given an aura of exactitude21,22. 
However, using P as a graded measure of 
evidence against the null hypothesis, as 
Fisher proposed, highlights the even more 
fundamental misunderstanding about P. 
If statistical power is limited, regardless 
of whether the P value returned from a 
statistical test is low or high, a repeat of 
the same experiment will likely result in a 
substantially different P value17 and thus 
suggest a very different level of evidence 
against the null hypothesis. Therefore, 
the P value gives little information about 
the probable result of a replication of the 
experiment; it has low test-retest reliabil-
ity. Put simply, the P value is usually a poor 
test of the null hypothesis. Most research-
ers recognize that a small sample is less 
likely to satisfactorily reflect the popula-
tion that they wish to study, as has been 
described in the Points of Significance 
series21, but they often do not realize that 
this effect will influence P values. There 
is variability in the P value23, but this is 
rarely mentioned in statistics textbooks or 
in statistics courses.

Indeed, most scientists employ the 
P value as if it were an absolute index of the 

truth. A low P value is automatically taken 
as substantial evidence that the data sup-
port a real phenomenon. In turn, research-
ers then assume that a repeat experiment 
would probably also return a low P value 
and support the original finding’s validity. 
Thus, many studies reporting a low P value 
are never challenged or replicated. These 
single studies stand alone and are taken to 
be true. In fact, another similar study with 
new, different, random observations from 
the populations would result in different 
samples and thus could well return a P 
value that is substantially different, possi-
bly providing much less apparent evidence 
for the reported finding.

Why statistical power is rarely 
sufficient for us to trust P
P values are only as reliable as the sample 
from which they have been calculated. 
A small sample taken from a population 
is unlikely to reliably reflect the features 
of that population21. As the number of 
observations taken from the population 
increases (i.e., sample size increases), the 

sample gives a better representation of the 
population from which it is drawn because 
it is less subject to the vagaries of chance. 
In the same way, values derived from these 
samples also become more reliable, and 
this includes the P value. Unfortunately, 
even when statistical power is close to 
90%, a P value cannot be considered to be 
stable; the P value would vary markedly 
each time if a study were replicated. In 
this sense, P is unreliable. As an example, 
if a study obtains P = 0.03, there is a 90% 
chance that a replicate study would return 
a P value somewhere between the wide 
range of 0–0.6 (90% prediction intervals), 
whereas the chances of P < 0.05 is just 56% 
(ref. 24). In other words, the spread of pos-
sible P values from replicate experiments 
may be considerable and will usually range 
widely across the typical threshold for sig-
nificance of 0.05. This may surprise many 
who believe that a test with 80% power is 
robust; however, this view comes from the 
accepted risk of a false negative.

To illustrate the variability of P values 
and why this happens, we will compare 
observations drawn from each of two 
normally distributed populations of data, 
A and B (Fig. 1). We know that a differ-
ence of 0.5 exists between the population 
means (the true effect size), but this dif-
ference may be concealed by the scatter of 
values within the population. We compare 
these populations by taking two random 
samples, one from A and the other from 
B. If we had to conserve resources, which 
could be necessary in practical situations, 
we might limit our two samples to ten 
observations each. In practice, we would 
conduct only one experiment, but let us 
consider the situation of having conduct-
ed four such simulated experiments (Fig. 
2). For each experiment, we use standard 

Figure 2 | Small samples show substantial variation. We drew samples of ten values at random from 
each of the populations A and B from Figure 1 to give four simulated comparisons. Horizontal lines 
denote the mean. We give the estimated effect size (the difference in the means) and the P value when 
the sample pairs are compared.

BOX 1  POWER ANALYSIS AND REPEATABILITY
A reasonable definition of the P value is that it measures the strength of evidence 
against the null hypothesis. However, unless statistical power is very high (>90%), 
the P value does not do this reliably. Power analysis combined with an either-or 
interpretation of the P value (simply either ‘statistically significant’ or ‘statistically 
nonsignificant’) allows us to estimate how often, if we were to conduct many replicate 
tests, a ‘statistically significant result’ will be found (assuming no type II errors)18. For 
instance, if the null hypothesis is false and a study has a power of 80%, then out of 
100 replicates, about 80 of them will be deemed statistically significant. In this sense, 
statistical power quantifies the repeatability of the P value, but only in terms of the 
either-or interpretation. Furthermore, in the real world, the power of a study is not 
known; at best it can be estimated. Finally, this interpretation of P is flawed because 
the strength of evidence against the null hypothesis is a continuous function of the 
magnitude of P (ref. 41). 
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this statistic.

Reproducible research findings are a cor-
nerstone of the scientific method, providing 
essential validation. There has been recent 
recognition, however, that the results of 
published research can be difficult to repli-
cate1–7, an awareness epitomized by a series 
in Nature entitled “Challenges in irrepro-
ducible research” and by the Reproducibility 
Initiative, a project intended to identify 
and reward reproducible research (http://
val idat ion.scienceexchange.com/#/
reproducibilityinitiative). In a recent 
meeting at the American Association for 
the Advancement of Science headquar-
ters  involving many of the major journals 
reporting biomedical science research, a 
common set of principles and guidelines 
was agreed upon for promoting transpar-
ency and reproducibility8. These discus-
sions and initiatives all focused on a num-
ber of issues, including aspects of statistical 
reporting9, levels of statistical power (i.e., 
sufficient statistical capacity to find an 
effect; a ‘statistically significant’ finding)10 
and inclusion-exclusion criteria. Yet a fun-
damental problem inherent in standard 
statistical methods, one that is pervasively 
linked to the lack of reproducibility in 
research, remains to be considered: the 

wide sample-to-sample variability in the P 
value. This omission reflects a general lack 
of awareness about this crucial issue, and 
we address this matter here.

Focusing on the P value during statistical 
analysis is an entrenched culture11–13. The 
P value is often used without the realization 
that in most cases the statistical power of 
a study is too low for P to assist the inter-
pretation of the data (Box 1). Among the 
many and varied reasons for a fearful and 
hidebound approach to statistical practice, 
a lack of understanding is prominent14. A 
better understanding of why P is so unhelp-
ful should encourage scientists to reduce 
their reliance on this misleading concept.

Readers may know of the long-stand-
ing philosophical debate about the value 
and validity of null-hypothesis test-
ing15–17. Although the P value formalizes  

null-hypothesis testing, this article will not 
revisit these issues. Rather, we concentrate 
on how P values themselves are misunder-
stood.

Although statistical power is a central 
element in reliability18, it is often consid-
ered only when a test fails to demonstrate 
a real effect (such as a difference between 
groups): a ‘false negative’ result (see Box 2 
for a glossary of statistical terms used in 
this article). Many scientists who are not 
statisticians do not realize that the power of 
a test is equally relevant when considering 
statistically significant results, that is, when 
the null hypothesis appears to be unten-
able. This is because the statistical power of 
the test dramatically affects our capacity to 
interpret the P value and thus the test result. 
It may surprise many scientists to discover 
that interpreting a study result from its P 
value alone is spurious in all but the most 
highly powered designs. The reason for 
this is that unless statistical power is very 
high, the P value exhibits wide sample-to-
sample variability and thus does not reliably 
indicate the strength of evidence against the 
null hypothesis (Box 1).

We give a step-by-step, illustrated expla-
nation of how statistical power affects the 
reliability of the P value obtained from an 
experiment, with reference to previous 
Points of Significance articles published 
in Nature Methods, to help convey these 
issues. We suggest that, for this reason, 
the P value’s preeminence16 is unjustified 
and arguments about null-hypothesis tests 
become virtually irrelevant. Researchers 
would do better to discard the P value and 
use alternative statistical measures for data 
interpretation.
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Figure 1 | Simulated data distributions of two 
populations. The difference between the mean 
values is 0.5, which is the true (population) 
effect size. The standard deviation (the spread of 
values) of each population is 1.
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An additional problem with P: 
exaggerated effect sizes
Simulations of repeated t-tests also illustrate 
the tendency of small samples to exagger-
ate effects. This can be shown by adding an 
additional dimension to the presentation of 
the data. It is clear how small samples are 
less likely to be sufficiently representative 
of the two tested populations to genuinely 
reflect the small but real difference between 
them. Those samples that are less repre-
sentative may, by chance, result in a low P 
value (Fig. 4). When a test has low power, a 
low P value will occur only when the sam-
ple drawn is relatively extreme. Drawing 
such a sample is unlikely, and such extreme 
values give an exaggerated impression of 
the difference between the original popula-
tions (Fig. 5). This phenomenon, known as 
the ‘winner’s curse’, has been emphasized by 
others10. If statistical power is augmented by 
taking more observations, the estimate of the 
difference between the populations becomes 
closer to, and centered on, the theoretical 
value of the effect size (Fig. 5).

Most readers will probably appreci-
ate that a large P value associated with 
80% statistical power is poor evidence 
for lack of an important effect. Fewer 
understand that unless a small P value 
is extremely small, it provides poor evi-
dence for the presence of an important 
effect. Most scientific studies have much 
less than 80% power, often around 50% 
in psychological research26  and averag-
ing 21% in neuroscience10. Reporting 
and interpreting P values under such cir-
cumstances is of little or no benefit. Such 
limited statistical power might seem sur-
prising, but it makes sense when consid-
ering that a medium effect size of 0.5 
and sample sizes of 30 for each of two 
conditions provide statistical power of 
49%. Weak statistical power results from 
small sample sizes—which are strongly 
encouraged in animal studies for ethical 
reasons but increase variability in the 
data sample—or from basing studies on 
previous works that report inflated effect 
sizes.

Alternatives to P
Poor statistical understanding leads to 
errors in analysis and threatens trust 
in research. Poorly reproducible stud-
ies impede and misdirect the progress of 
science, may do harm if the findings are 
applied therapeutically, and may discourage 
the funding of future research. The P value 
continues to be held up as the key statistic 
to report and interpret27,28, but we should 
now accept that this needs to change. In 
most cases, by simply accepting a P value, 
we ignore the scientific tenet of repeatabil-
ity. We must accept this inconvenient truth 
about P values23 and seek an alternative 
approach to statistical inference. The natu-
ral desire for a single categorical yes-or-no 
decision should give way to a more mature 
process in which evidence is graded using 
a variety of measures. We may also need 
to reflect on the vast body of material that 
has already been published using standard 
statistical criteria. Previous reliance on P 
values emphasizes the need to reexamine 
previous results and replicate them if pos-

Sample 
size: 10

Theoretical 
power: 18%

6 53 186 1,000

61 245 469 1,000 316 604 819 1,000

598 839 948 1,000

0.0001 0.001 0.01
log10 P

0.05 1.00.0001 0.001 0.01
log10 P

0.05 1.00.0001 0.001 0.01
log10 P

0.05 1.00.0001 0.001 0.01
log10 P

0.05 1.0

Sample 
size: 30

Theoretical 
power: 48%

Sample 
size: 64

Theoretical 
power: 80%

Sample 
size: 100

Theoretical 
power: 94%

Figure 4 | Sample size affects the distribution of P values. We drew random samples of the indicated sizes from each of the two simulated populations in Figure 1  
and made 1,000 simulated comparisons with a two-sample t-test for each sample size. The distribution of P values is shown; it varies substantially depending 
on the sample size. Above each histogram we show the number of P values at or below 0.001, 0.01, 0.05 (red) and 1. The empirical power is the percentage of 
simulations in which the true difference of 0.5 is detected using a cutoff of P < 0.05. These broadly agree with the theoretical power.

Figure 3 | A larger sample size estimates effect size more precisely. We drew random samples of the indicated sizes from each of the two simulated 
populations in Figure 1 and made 1,000 simulated comparisons for each sample size. We assessed the precision of the effect size from each comparison using 
the 95% CI range. The histograms show the distributions of these 95% CI ranges for different sample sizes. As sample size increased, both the range and 
scatter of the confidence intervals decreased, reflecting increased power and greater precision from larger sample sizes. The vertical scale of each histogram 
has been adjusted so that the height of each plot is the same.
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In turn, power analysis can be replaced with 
‘planning for precision’, which calculates 
the sample size required for estimating the 
effect size to reach a defined degree of pre-
cision40.

The P value continues to occupy a promi-
nent place within the conduct of research, 

sible2,4 (http://validation.scienceexchange.
com/#/reproducibilityinitiative).

We must consider alternative methods of 
statistical interpretation that could be used. 
Several options are available, and although 
no one approach is perfect15, perhaps the 
most intuitive and tractable is to report 
effect size estimates and their precision 
(95% confidence intervals (95% CIs; see 
Box 3 for statistical formulae discussed in 
this article)29,30, aided by graphical pre-
sentation31–34. This approach to statistical 
interpretation emphasizes the importance 
and precision of the estimated effect size, 
which answers the most frequent question 
that scientists ask: how big is the difference, 
or how strong is the relationship or associa-
tion? In other words, although researchers 
may be conditioned to test null hypotheses 
(which are usually false34), they really want 
to find not only the direction of an effect 
but also its size and the precision of that 
estimate, so that the importance and rel-
evance of the effect can be judged17,35,36.

Specifically, an effect size gives quantita-
tive information about the magnitude of 
the relationship studied, and its 95% CIs 
indicate the uncertainty of that measure 
by presenting the range within which the 
true effect size is likely to lie (Fig. 6). To aid 
interpretation of the effect size, researchers 
may be well advised to consider what effect 
size they would deem important in the con-
text of their study before data analysis.

Although effect sizes and their 95% CIs 
can be used to make threshold-based deci-
sions about statistical significance in the 
same way that the P value can be applied, 
they provide more information than the 
P value17, in a more obvious and intuitive 
way37. In addition, the effect size and 95% 
CIs allow findings from several experiments 
to be combined with meta-analysis to obtain 
more accurate effect-size estimates, which is 
often the goal of empirical studies. Effect 
size can be appreciated most easily in the 
popular types of statistical analysis where 
a simple difference between group means 
is considered. However, even in other cir-
cumstances—such as measures of goodness 
of fit, correlation and proportions—effect 
sizes and, importantly, their 95% CIs, can 
also be expressed. Such tests and the soft-
ware needed for the 95% CIs to be calculat-
ed and interpreted are readily available38. In 
addition, modern statistical methods such as 
bootstrap techniques and permutation tests 
have been developed for the analysis of small 
samples common in scientific studies39.

When interpreting data, many scientists 
appreciate that an estimate of effect size is 
relevant only within the context of a specific 
study. We should take this further and not 
only include effect sizes and their 95% CIs 
in analyses but also focus our attention on 
these values and discount the fickle P value. 

Figure 5 | How sample size alters estimated effect size. Using the indicated sample sizes, we simulated 
a two-sample t-test 1,000 times at each sample size using the populations in Figure 1. Right panels, 
estimated effect size (y axis) and the associated P value (x axis) for each simulation. Red dots show 
single simulations, and the contours outline increasing density of their distribution. For example, for 
a sample size of 64, the simulations cluster around P = 0.01 and an estimated effect size of 0.50. Each 
right y axis is labeled with the biggest and smallest effect sizes from simulations where P < 0.05. The 
true (population) effect size of 0.50 is indicated on the left y axis. Left panels, distribution of effect 
size for ‘statistically significant’ simulations (i.e., observed P < 0.05). When the sample size is 30 
(power = 48%), the estimated effect size exceeds the true difference in 97% of simulations (shaded 
columns). For samples of 100 (power = 94%), the estimated effect size exceeds the true effect size in 
roughly half (55%) the simulations.
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The fickle P value generates irreproducible results
Lewis G Halsey, Douglas Curran-Everett, Sarah L Vowler & Gordon B Drummond

The reliability and reproducibility of science are under scrutiny. However, a major cause of this lack of 
repeatability is not being considered: the wide sample-to-sample variability in the P value. We explain 
why P is fickle to discourage the ill-informed practice of interpreting analyses based predominantly on 
this statistic.

Reproducible research findings are a cor-
nerstone of the scientific method, providing 
essential validation. There has been recent 
recognition, however, that the results of 
published research can be difficult to repli-
cate1–7, an awareness epitomized by a series 
in Nature entitled “Challenges in irrepro-
ducible research” and by the Reproducibility 
Initiative, a project intended to identify 
and reward reproducible research (http://
val idat ion.scienceexchange.com/#/
reproducibilityinitiative). In a recent 
meeting at the American Association for 
the Advancement of Science headquar-
ters  involving many of the major journals 
reporting biomedical science research, a 
common set of principles and guidelines 
was agreed upon for promoting transpar-
ency and reproducibility8. These discus-
sions and initiatives all focused on a num-
ber of issues, including aspects of statistical 
reporting9, levels of statistical power (i.e., 
sufficient statistical capacity to find an 
effect; a ‘statistically significant’ finding)10 
and inclusion-exclusion criteria. Yet a fun-
damental problem inherent in standard 
statistical methods, one that is pervasively 
linked to the lack of reproducibility in 
research, remains to be considered: the 

wide sample-to-sample variability in the P 
value. This omission reflects a general lack 
of awareness about this crucial issue, and 
we address this matter here.

Focusing on the P value during statistical 
analysis is an entrenched culture11–13. The 
P value is often used without the realization 
that in most cases the statistical power of 
a study is too low for P to assist the inter-
pretation of the data (Box 1). Among the 
many and varied reasons for a fearful and 
hidebound approach to statistical practice, 
a lack of understanding is prominent14. A 
better understanding of why P is so unhelp-
ful should encourage scientists to reduce 
their reliance on this misleading concept.

Readers may know of the long-stand-
ing philosophical debate about the value 
and validity of null-hypothesis test-
ing15–17. Although the P value formalizes  

null-hypothesis testing, this article will not 
revisit these issues. Rather, we concentrate 
on how P values themselves are misunder-
stood.

Although statistical power is a central 
element in reliability18, it is often consid-
ered only when a test fails to demonstrate 
a real effect (such as a difference between 
groups): a ‘false negative’ result (see Box 2 
for a glossary of statistical terms used in 
this article). Many scientists who are not 
statisticians do not realize that the power of 
a test is equally relevant when considering 
statistically significant results, that is, when 
the null hypothesis appears to be unten-
able. This is because the statistical power of 
the test dramatically affects our capacity to 
interpret the P value and thus the test result. 
It may surprise many scientists to discover 
that interpreting a study result from its P 
value alone is spurious in all but the most 
highly powered designs. The reason for 
this is that unless statistical power is very 
high, the P value exhibits wide sample-to-
sample variability and thus does not reliably 
indicate the strength of evidence against the 
null hypothesis (Box 1).

We give a step-by-step, illustrated expla-
nation of how statistical power affects the 
reliability of the P value obtained from an 
experiment, with reference to previous 
Points of Significance articles published 
in Nature Methods, to help convey these 
issues. We suggest that, for this reason, 
the P value’s preeminence16 is unjustified 
and arguments about null-hypothesis tests 
become virtually irrelevant. Researchers 
would do better to discard the P value and 
use alternative statistical measures for data 
interpretation.

Population A Population B

1

0 0.5

Figure 1 | Simulated data distributions of two 
populations. The difference between the mean 
values is 0.5, which is the true (population) 
effect size. The standard deviation (the spread of 
values) of each population is 1.
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and discovering that P is flawed will leave 
many scientists uneasy. As we have demon-
strated, however, unless statistical power is 
very high (and much higher than in most 
experiments), the P value should be inter-
preted tentatively at best. Data analysis and 
interpretation must incorporate the uncer-
tainty embedded in a P value.
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• An fMRI on dead fish
• Found many active brain regions

• All background noise and random variation

Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon:

An argument for multiple comparisons correction
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INTRODUCTION

With the extreme dimensionality of functional neuroimaging data comes

extreme risk for false positives.  Across the 130,000 voxels in a typical fMRI

volume the probability of a false positive is almost certain.  Correction for

multiple comparisons should be completed with these datasets, but is often

ignored by investigators. To illustrate the magnitude of the problem we

carried out a real experiment that demonstrates the danger of not correcting

for chance properly.

GLM RESULTS

A t-contrast was used to test for regions with significant BOLD signal change

during the photo condition compared to rest.  The parameters for this

comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent

threshold.

Several active voxels were discovered in a cluster located within the salmon’s

brain cavity (Figure 1, see above).  The size of this cluster was 81 mm3 with a

cluster-level significance of p = 0.001.  Due to the coarse resolution of the

echo-planar image acquisition and the relatively small size of the salmon

brain further discrimination between brain regions could not be completed.

Out of a search volume of 8064 voxels a total of 16 voxels were significant.

Identical t-contrasts controlling the false discovery rate (FDR) and familywise

error rate (FWER) were completed.  These contrasts indicated no active

voxels, even at relaxed statistical thresholds (p = 0.25).

METHODS

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.

The salmon was approximately 18 inches long, weighed 3.8 lbs, and was not alive at

the time of scanning.

Task. The task administered to the salmon involved completing an open-ended

mentalizing task.  The salmon was shown a series of photographs depicting human

individuals in social situations with a specified emotional valence.  The salmon was

asked to determine what emotion the individual in the photo must have been

experiencing.

Design. Stimuli were presented in a block design with each photo presented for 10

seconds followed by 12 seconds of rest.  A total of 15 photos were displayed.  Total

scan time was 5.5 minutes.

Preprocessing. Image processing was completed using SPM2.  Preprocessing steps

for the functional imaging data included a 6-parameter rigid-body affine realignment

of the fMRI timeseries, coregistration of the data to a T1-weighted anatomical image,

and 8 mm full-width at half-maximum (FWHM) Gaussian smoothing.

Analysis. Voxelwise statistics on the salmon data were calculated through an

ordinary least-squares estimation of the general linear model (GLM).  Predictors of

the hemodynamic response were modeled by a boxcar function convolved with a

canonical hemodynamic response.  A temporal high pass filter of 128 seconds was

include to account for low frequency drift.  No autocorrelation correction was

applied.

Voxel Selection.  Two methods were used for the correction of multiple comparisons

in the fMRI results.  The first method controlled the overall false discovery rate

(FDR) and was based on a method defined by Benjamini and Hochberg (1995).  The

second method controlled the overall familywise error rate (FWER) through the use

of Gaussian random field theory.  This was done using algorithms originally devised

by Friston et al. (1994).

DISCUSSION

Can we conclude from this data that the salmon is engaging in the

perspective-taking task?  Certainly not. What we can determine is that random

noise in the EPI timeseries may yield spurious results if multiple comparisons

are not controlled for. Adaptive methods for controlling the FDR and FWER

are excellent options and are widely available in all major fMRI analysis

packages.  We argue that relying on standard statistical thresholds (p < 0.001)

and low minimum cluster sizes (k > 8) is an ineffective control for multiple

comparisons.  We further argue that the vast majority of fMRI studies should

be utilizing multiple comparisons correction as standard practice in the

computation of their statistics.

VOXELWISE VARIABILITY

To examine the spatial configuration of false positives we completed a

variability analysis of the fMRI timeseries.  On a voxel-by-voxel basis we

calculated the standard deviation of signal values across all 140 volumes.

We observed clustering of highly variable voxels into groups near areas of

high voxel signal intensity. Figure 2a shows the mean EPI image for all 140

image volumes.  Figure 2b shows the standard deviation values of each voxel.

Figure 2c shows thresholded standard deviation values overlaid onto a high-

resolution T1-weighted image.

To
To investigate this effect in greater

detail we conducted a Pearson

correlation to examine the relationship

between the signal in a voxel and its

variability.  There was a significant

positive correlation between the mean

voxel value and its variability over

time (r = 0.54, p < 0.001).  A

scatterplot of mean voxel signal

intensity against voxel standard

deviation is presented to the right.

REFERENCES

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful

approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289-300.

Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, and Evans AC. (1994). Assessing the

significance of focal activations using their spatial extent.  Human Brain Mapping, 1:214-220.

PITFALL: MULTIPLE TESTING

http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/

Source: a blog by Jeff Leek, Biostatistics, John Hopkins 
University
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MULTIPLE TESTING
Control False Positive Rate for two proteins 

t for protein 1

α/2 α/2

For each protein:

# of proteins with # of proteins with Total
no detected di�erence detected di�erence

# true non-di�. proteins U V m0

# true di�. proteins T S m1 = m�m0

Total m�R R m

Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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(Ȳ1· � Ȳ2·)� t↵/2

q
s21
n1

+
s22
n2

, (Ȳ1· � Ȳ2·) + t↵/2

q
s21
n1

+
s22
n2

�

G1 �G2 = 0 G1 �G2 6= 0

�

�

! = P{true peptide sequence 2 database} (1)

f(z) = [(1� !) + !FX(z)] fY(z) + [!FY(z)] fX(z) (2)

X Y Z (3)

FDR = P{Z = Y | Z > z⇤} =
P{Z = Y \ Z > Z⇤}

P{Z > z⇤} (4)

Z =

8
<

:
Y with probability 1� !;

max(X,Y ) with probability !.

(5)

FDR = E


V

max(R,1)

�
(6)

1


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, (Ȳ1· � Ȳ2·) + t↵/2

q
s21
n1

+
s22
n2

�

G1 �G2 = 0 G1 �G2 6= 0

�

�

! = P{true peptide sequence 2 database} (1)

f(z) = [(1� !) + !FX(z)] fY(z) + [!FY(z)] fX(z) (2)

X Y Z (3)

FDR = P{Z = Y | Z > z⇤} =
P{Z = Y \ Z > Z⇤}

P{Z > z⇤} (4)

Z =

8
<

:
Y with probability 1� !;

max(X,Y ) with probability !.

(5)

FDR = E


V

max(R,1)

�
(6)

1

Observed Systematic Random deviation
feature = mean signal + due to all sources
intensity of disease group of variation

yij = Group meani + Errorj(i)
� N

�
0,�2

�

Var(D̂1 � D̂2) = 2
nb

ngnpns

�
⇥2
Indiv + ⇥2

Error

⇥
(13)

Reference:

Var(D̂1 � D̂2) = 2

⇤
⇥2
Indiv + 2⇥2

Error

I

⌅
(14)

Loop:

Var(D̂1 � D̂2) =
8

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(15)

if two disease groups are in a same block, and

Var(D̂1 � D̂3) =
12

5ns

�
⇥2
Indiv + ⇥2

Error

⇥
(16)

µ1 � µ2 (17)
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MULTIVARIATE  TYPE I ERROR
How many false positives can we tolerate?
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Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,
conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V
are random quantities, but only R is observed.
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Table 1: Outcomes of testing m null hypotheses H0 : µH = µD simultaneously for m experimental features,

conditionally on the features detected and quantified by a signal processing procedure. R, S, T , U and V

are random quantities, but only R is observed.
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P values are just the tip 
of the iceberg

Ridding science of shoddy statistics will require scrutiny of every step, 
not merely the last one, say Jeffrey T. Leek and Roger D. Peng.

There is no statistic more maligned 
than the P value. Hundreds of papers 
and blogposts have been written 

about what some statisticians deride as ‘null 
hypothesis significance testing’ (NHST; see, 
for example, go.nature.com/pfvgqe). NHST 
deems whether the results of a data analysis 
are important on the basis of whether a 
summary statistic (such as a P value) has 
crossed a threshold. Given the discourse, it 
is no surprise that some hailed as a victory 
the banning of NHST methods (and all of 
statistical inference) in the journal Basic 
and Applied Social Psychology in February1.  

Such a ban will in fact have scant effect 
on the quality of published science. There 
are many stages to the design and analysis 
of a successful study (see ‘Data pipeline’). 
The last of these steps is the calculation of 
an inferential statistic such as a P value, and 
the application of a ‘decision rule’ to it (for 
example, P < 0.05). In practice, decisions 
that are made earlier in data analysis have 
a much greater impact on results — from 
experimental design to batch effects, lack 
of adjustment for confounding factors, or 
simple measurement error. Arbitrary levels 
of statistical significance can be achieved by 
changing the ways in which data are cleaned, 
summarized or modelled2. 

P values are an easy target: being widely 
used, they are widely abused. But, in prac-
tice, deregulating statistical significance 
opens the door to even more ways to game 
statistics — intentionally or unintentionally 
— to get a result. Replacing P values with 
Bayes factors or another statistic is ultimately 
about choosing a different trade-off of true 
positives and false positives. Arguing about 
the P value is like focusing on a single mis-
spelling, rather than on the faulty logic of a 
sentence. 

Better education is a start. Just as anyone 
who does DNA sequencing or remote-
sensing has to be trained to use a machine, 
so too anyone who analyses data must be 
trained in the relevant software and con-
cepts. Even investigators who supervise data 
analysis should be required by their funding 
agencies and institutions to complete train-
ing in understanding the outputs and poten-
tial problems with an analysis. 

There are online courses specifically 

designed to address this crisis. For 
example, the Data Science Specialization, 
offered by Johns Hopkins University in 
Baltimore, Maryland, and Data Carpen-
try, can easily be integrated into training 
and research. It is increasingly possible to 
learn to use the computing tools relevant 
to specific disciplines — training in Bio-
conductor, Galaxy and Python is included 
in Johns Hopkins’ Genomic Data Science  
Specialization, for instance. 

But education is not enough. Data 

analysis is taught through an apprenticeship 
model, and different disciplines develop 
their own analysis subcultures. Decisions 
are based on cultural conventions in spe-
cific communities rather than on empirical 
evidence. For example, economists call data 
measured over time ‘panel data’, to which 
they frequently apply mixed-effects models. 
Biomedical scientists refer to the same type 
of data structure as ‘longitudinal data’, and 
often go at it with generalized estimating 
equations. 

Statistical research largely focuses on 
mathematical statistics, to the exclusion of 
the behaviour and processes involved in 
data analysis. To solve this deeper problem, 
we must study how people perform data 
analysis in the real world. What sets them up 
for success, and what for failure? Controlled 
experiments have been done in visualiza-
tion3 and risk interpretation4 to evaluate 
how humans perceive and interact with data 
and statistics. More recently, we and others 
have been studying the entire analysis pipe-
line. We found, for example, that recently 
trained data analysts do not know how to 
infer P values from plots of data5, but they 
can learn to do so with practice.

 The ultimate goal is evidence-based data 
analysis6. This is analogous to evidence-
based medicine, in which physicians are 
encouraged to use only treatments for which 
efficacy has been proved in controlled trials. 
Statisticians and the people they teach and 
collaborate with need to stop arguing about 
P values, and prevent the rest of the iceberg 
from sinking science. ■
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DATA PIPELINE
The design and analysis of a successful study 
has many stages, all of which need policing.

Experimental design

Data collection

Raw data

Data cleaning

Tidy data

Exploratory data analysis

Potential statistical models

Statistical modelling

Summary statistics

Inference

P value

Extreme scrutiny

Little debate
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Statistical 
considerations are key 

at every step



• Anti-depressant Paxil was studied for several main outcomes
• None showed an effect
• Some secondary outcomes dis

• Switched the outcome of the trial and used to market the drug

PITFALL: OUTCOME SWITCHING

http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/

Source: a blog by Jeff Leek, Biostatistics, John Hopkins 
University

http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/


PITFALL: NOT PRE-SPECIFIED DATA 
SELECTION AND ANALYSIS 

http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/

Source: a blog by Jeff Leek, Biostatistics, John Hopkins 
University

• Compare 2 groups: women at peak and off peak fertility cycle
• A series of choices of which women to include in which 

comparison group
• Conclude that at peak fertility women are more likely to wear 

red or pink shirts

The garden of forking paths: Why multiple comparisons can be a problem,
even when there is no “fishing expedition” or “p-hacking” and the research

hypothesis was posited ahead of time⇤

Andrew Gelman† and Eric Loken‡

14 Nov 2013

“I thought of a labyrinth of labyrinths, of one sinuous spreading labyrinth that would encompass
the past and the future . . . I felt myself to be, for an unknown period of time, an abstract per-
ceiver of the world.” — Borges (1941)

Abstract

Researcher degrees of freedom can lead to a multiple comparisons problem, even in settings
where researchers perform only a single analysis on their data. The problem is there can be a
large number of potential comparisons when the details of data analysis are highly contingent on
data, without the researcher having to perform any conscious procedure of fishing or examining
multiple p-values. We discuss in the context of several examples of published papers where
data-analysis decisions were theoretically-motivated based on previous literature, but where the
details of data selection and analysis were not pre-specified and, as a result, were contingent on
data.

1. Multiple comparisons doesn’t have to feel like fishing

1.1. Background

There is a growing realization that statistically significant claims in scientific publications are
routinely mistaken. A dataset can be analyzed in so many di↵erent ways (with the choices being
not just what statistical test to perform but also decisions on what data to exclude or exclude, what
measures to study, what interactions to consider, etc.), that very little information is provided by
the statement that a study came up with a p < .05 result. The short version is that it’s easy to
find a p < .05 comparison even if nothing is going on, if you look hard enough—and good scientists
are skilled at looking hard enough and subsequently coming up with good stories (plausible even to
themselves, as well as to their colleagues and peer reviewers) to back up any statistically-significant
comparisons they happen to come up with.

This problem is sometimes called “p-hacking” or “researcher degrees of freedom” (Simmons, Nel-
son, and Simonsohn, 2011). In a recent article, we spoke of “fishing expeditions, with a willingness
to look hard for patterns and report any comparisons that happen to be statistically significant”
(Gelman, 2013a).

But we are starting to feel that the term “fishing” was unfortunate, in that it invokes an image
of a researcher trying out comparison after comparison, throwing the line into the lake repeatedly
until a fish is snagged. We have no reason to think that researchers regularly do that. We think
the real story is that researchers can perform a reasonable analysis given their assumptions and
their data, but had the data turned out di↵erently, they could have done other analyses that were
just as reasonable in those circumstances.

⇤
We thank Ed Vul, Howard Wainer, Macartan Humphreys, and E. J. Wagenmakers for helpful comments and the

National Science Foundation for partial support of this work.
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RESEARCHER DEGREE OF FREEDOM



TAKE-AWAYS
• Define the problem

• translate biological/clinical goal into statistical goal

• Experimental design: avoid bias and inefficiency
• randomization, replication, blocking

• Follow a pre-defined design and analysis protocol 
• do not alter the design
• do not cherry-pick data/parameters
• understand and state limitations

• Document all the steps
• in form of the executable code
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A common misconception about CIs is an expectation that a CI 
captures the mean of a second sample drawn from the same popu-
lation with a CI% chance. Because CI position and size vary with 
each sample, this chance is actually lower.

This variety in bars can be overwhelming, and visually relating 
their relative position to a measure of significance is challenging. 
We provide a reference of error bar spacing for common P values in  
Figure 3. Notice that P = 0.05 is not reached until s.e.m. bars are sepa-
rated by about 1 s.e.m, whereas 95% CI bars are more generous and 
can overlap by as much as 50% and still indicate a significant differ-
ence. If 95% CI bars just touch, the result is highly significant (P = 
0.005). All the figures can be reproduced using the spreadsheet avail-
able in Supplementary Table 1, with which you can explore the rela-
tionship between error bar size, gap and P value.

Be wary of error bars for small sample sizes—they are not robust, 
as illustrated by the sharp decrease in size of CI bars in that regime 
(Fig. 2b). In these cases (e.g., n = 3), it is better to show individual 
data values. Furthermore, when dealing with samples that are related 
(e.g., paired, such as before and after treatment), other types of error 
bars are needed, which we will discuss in a future column.

It would seem, therefore, that none of the error bar types is intui-
tive. An alternative is to select a value of CI% for which the bars 
touch at a desired P value (e.g., 83% CI bars touch at P = 0.05). 
Unfortunately, owing to the weight of existing convention, all three 
types of bars will continue to be used. With our tips, we hope you’ll 
be more confident in interpreting them. 
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2659).
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Figure 3 | Size and position of s.e.m. and 95% CI error bars for common  
P values. Examples are based on sample means of 0 and 1 (n = 10).


